Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* MN10300 Kernel probes implementation
 *
 * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
 * Written by Mark Salter (msalter@redhat.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public Licence as published by
 * the Free Software Foundation; either version 2 of the Licence, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public Licence for more details.
 *
 * You should have received a copy of the GNU General Public Licence
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/spinlock.h>
#include <linux/preempt.h>
#include <linux/kdebug.h>
#include <asm/cacheflush.h>

struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

/* kprobe_status settings */
#define KPROBE_HIT_ACTIVE	0x00000001
#define KPROBE_HIT_SS		0x00000002

static struct kprobe *cur_kprobe;
static unsigned long cur_kprobe_orig_pc;
static unsigned long cur_kprobe_next_pc;
static int cur_kprobe_ss_flags;
static unsigned long kprobe_status;
static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2];
static unsigned long cur_kprobe_bp_addr;

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;


/* singlestep flag bits */
#define SINGLESTEP_BRANCH 1
#define SINGLESTEP_PCREL  2

#define READ_BYTE(p, valp) \
	do { *(u8 *)(valp) = *(u8 *)(p); } while (0)

#define READ_WORD16(p, valp)					\
	do {							\
		READ_BYTE((p), (valp));				\
		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
	} while (0)

#define READ_WORD32(p, valp)					\
	do {							\
		READ_BYTE((p), (valp));				\
		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
		READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\
		READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\
	} while (0)


static const u8 mn10300_insn_sizes[256] =
{
	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
};

#define LT (1 << 0)
#define GT (1 << 1)
#define GE (1 << 2)
#define LE (1 << 3)
#define CS (1 << 4)
#define HI (1 << 5)
#define CC (1 << 6)
#define LS (1 << 7)
#define EQ (1 << 8)
#define NE (1 << 9)
#define RA (1 << 10)
#define VC (1 << 11)
#define VS (1 << 12)
#define NC (1 << 13)
#define NS (1 << 14)

static const u16 cond_table[] = {
	/*  V  C  N  Z  */
	/*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI),
	/*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS),
	/*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI),
	/*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS),
	/*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS),
	/*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS),
	/*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS),
	/*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS),
	/*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI),
	/*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS),
	/*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI),
	/*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS),
	/*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS),
	/*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS),
	/*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS),
	/*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS),
};

/*
 * Calculate what the PC will be after executing next instruction
 */
static unsigned find_nextpc(struct pt_regs *regs, int *flags)
{
	unsigned size;
	s8  x8;
	s16 x16;
	s32 x32;
	u8 opc, *pc, *sp, *next;

	next = 0;
	*flags = SINGLESTEP_PCREL;

	pc = (u8 *) regs->pc;
	sp = (u8 *) (regs + 1);
	opc = *pc;

	size = mn10300_insn_sizes[opc];
	if (size > 0) {
		next = pc + size;
	} else {
		switch (opc) {
			/* Bxx (d8,PC) */
		case 0xc0 ... 0xca:
			x8 = 2;
			if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
				x8 = (s8)pc[1];
			next = pc + x8;
			*flags |= SINGLESTEP_BRANCH;
			break;

			/* JMP (d16,PC) or CALL (d16,PC) */
		case 0xcc:
		case 0xcd:
			READ_WORD16(pc + 1, &x16);
			next = pc + x16;
			*flags |= SINGLESTEP_BRANCH;
			break;

			/* JMP (d32,PC) or CALL (d32,PC) */
		case 0xdc:
		case 0xdd:
			READ_WORD32(pc + 1, &x32);
			next = pc + x32;
			*flags |= SINGLESTEP_BRANCH;
			break;

			/* RETF */
		case 0xde:
			next = (u8 *)regs->mdr;
			*flags &= ~SINGLESTEP_PCREL;
			*flags |= SINGLESTEP_BRANCH;
			break;

			/* RET */
		case 0xdf:
			sp += pc[2];
			READ_WORD32(sp, &x32);
			next = (u8 *)x32;
			*flags &= ~SINGLESTEP_PCREL;
			*flags |= SINGLESTEP_BRANCH;
			break;

		case 0xf0:
			next = pc + 2;
			opc = pc[1];
			if (opc >= 0xf0 && opc <= 0xf7) {
				/* JMP (An) / CALLS (An) */
				switch (opc & 3) {
				case 0:
					next = (u8 *)regs->a0;
					break;
				case 1:
					next = (u8 *)regs->a1;
					break;
				case 2:
					next = (u8 *)regs->a2;
					break;
				case 3:
					next = (u8 *)regs->a3;
					break;
				}
				*flags &= ~SINGLESTEP_PCREL;
				*flags |= SINGLESTEP_BRANCH;
			} else if (opc == 0xfc) {
				/* RETS */
				READ_WORD32(sp, &x32);
				next = (u8 *)x32;
				*flags &= ~SINGLESTEP_PCREL;
				*flags |= SINGLESTEP_BRANCH;
			} else if (opc == 0xfd) {
				/* RTI */
				READ_WORD32(sp + 4, &x32);
				next = (u8 *)x32;
				*flags &= ~SINGLESTEP_PCREL;
				*flags |= SINGLESTEP_BRANCH;
			}
			break;

			/* potential 3-byte conditional branches */
		case 0xf8:
			next = pc + 3;
			opc = pc[1];
			if (opc >= 0xe8 && opc <= 0xeb &&
			    (cond_table[regs->epsw & 0xf] &
			     (1 << ((opc & 0xf) + 3)))
			    ) {
				READ_BYTE(pc+2, &x8);
				next = pc + x8;
				*flags |= SINGLESTEP_BRANCH;
			}
			break;

		case 0xfa:
			if (pc[1] == 0xff) {
				/* CALLS (d16,PC) */
				READ_WORD16(pc + 2, &x16);
				next = pc + x16;
			} else
				next = pc + 4;
			*flags |= SINGLESTEP_BRANCH;
			break;

		case 0xfc:
			x32 = 6;
			if (pc[1] == 0xff) {
				/* CALLS (d32,PC) */
				READ_WORD32(pc + 2, &x32);
			}
			next = pc + x32;
			*flags |= SINGLESTEP_BRANCH;
			break;
			/* LXX (d8,PC) */
			/* SETLB - loads the next four bytes into the LIR reg */
		case 0xd0 ... 0xda:
		case 0xdb:
			panic("Can't singlestep Lxx/SETLB\n");
			break;
		}
	}
	return (unsigned)next;

}

/*
 * set up out of place singlestep of some branching instructions
 */
static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
{
	u8 opc, *pc, *sp, *next;

	next = NULL;
	pc = (u8 *) regs->pc;
	sp = (u8 *) (regs + 1);

	switch (pc[0]) {
	case 0xc0 ... 0xca:	/* Bxx (d8,PC) */
	case 0xcc:		/* JMP (d16,PC) */
	case 0xdc:		/* JMP (d32,PC) */
	case 0xf8:              /* Bxx (d8,PC)  3-byte version */
		/* don't really need to do anything except cause trap  */
		next = pc;
		break;

	case 0xcd:		/* CALL (d16,PC) */
		pc[1] = 5;
		pc[2] = 0;
		next = pc + 5;
		break;

	case 0xdd:		/* CALL (d32,PC) */
		pc[1] = 7;
		pc[2] = 0;
		pc[3] = 0;
		pc[4] = 0;
		next = pc + 7;
		break;

	case 0xde:		/* RETF */
		next = pc + 3;
		regs->mdr = (unsigned) next;
		break;

	case 0xdf:		/* RET */
		sp += pc[2];
		next = pc + 3;
		*(unsigned *)sp = (unsigned) next;
		break;

	case 0xf0:
		next = pc + 2;
		opc = pc[1];
		if (opc >= 0xf0 && opc <= 0xf3) {
			/* CALLS (An) */
			/* use CALLS (d16,PC) to avoid mucking with An */
			pc[0] = 0xfa;
			pc[1] = 0xff;
			pc[2] = 4;
			pc[3] = 0;
			next = pc + 4;
		} else if (opc >= 0xf4 && opc <= 0xf7) {
			/* JMP (An) */
			next = pc;
		} else if (opc == 0xfc) {
			/* RETS */
			next = pc + 2;
			*(unsigned *) sp = (unsigned) next;
		} else if (opc == 0xfd) {
			/* RTI */
			next = pc + 2;
			*(unsigned *)(sp + 4) = (unsigned) next;
		}
		break;

	case 0xfa:	/* CALLS (d16,PC) */
		pc[2] = 4;
		pc[3] = 0;
		next = pc + 4;
		break;

	case 0xfc:	/* CALLS (d32,PC) */
		pc[2] = 6;
		pc[3] = 0;
		pc[4] = 0;
		pc[5] = 0;
		next = pc + 6;
		break;

	case 0xd0 ... 0xda:	/* LXX (d8,PC) */
	case 0xdb:		/* SETLB */
		panic("Can't singlestep Lxx/SETLB\n");
	}

	return (unsigned) next;
}

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	return 0;
}

void __kprobes arch_copy_kprobe(struct kprobe *p)
{
	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	*p->addr = BREAKPOINT_INSTRUCTION;
	flush_icache_range((unsigned long) p->addr,
			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
}

void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
#ifndef CONFIG_MN10300_CACHE_SNOOP
	mn10300_dcache_flush();
	mn10300_icache_inv();
#endif
}

void arch_remove_kprobe(struct kprobe *p)
{
}

static inline
void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
{
	*p->addr = p->opcode;
	regs->pc = (unsigned long) p->addr;
#ifndef CONFIG_MN10300_CACHE_SNOOP
	mn10300_dcache_flush();
	mn10300_icache_inv();
#endif
}

static inline
void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
	unsigned long nextpc;

	cur_kprobe_orig_pc = regs->pc;
	memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
	regs->pc = (unsigned long) cur_kprobe_ss_buf;

	nextpc = find_nextpc(regs, &cur_kprobe_ss_flags);
	if (cur_kprobe_ss_flags & SINGLESTEP_PCREL)
		cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc);
	else
		cur_kprobe_next_pc = nextpc;

	/* branching instructions need special handling */
	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH)
		nextpc = singlestep_branch_setup(regs);

	cur_kprobe_bp_addr = nextpc;

	*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
	mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf,
				    sizeof(cur_kprobe_ss_buf));
	mn10300_icache_inv();
}

static inline int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	int ret = 0;
	unsigned int *addr = (unsigned int *) regs->pc;

	/* We're in an interrupt, but this is clear and BUG()-safe. */
	preempt_disable();

	/* Check we're not actually recursing */
	if (kprobe_running()) {
		/* We *are* holding lock here, so this is safe.
		   Disarm the probe we just hit, and ignore it. */
		p = get_kprobe(addr);
		if (p) {
			disarm_kprobe(p, regs);
			ret = 1;
		} else {
			p = cur_kprobe;
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		/* If it's not ours, can't be delete race, (we hold lock). */
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p) {
		if (*addr != BREAKPOINT_INSTRUCTION) {
			/* The breakpoint instruction was removed right after
			 * we hit it.  Another cpu has removed either a
			 * probepoint or a debugger breakpoint at this address.
			 * In either case, no further handling of this
			 * interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it */
		goto no_kprobe;
	}

	kprobe_status = KPROBE_HIT_ACTIVE;
	cur_kprobe = p;
	if (p->pre_handler(p, regs)) {
		/* handler has already set things up, so skip ss setup */
		return 1;
	}

ss_probe:
	prepare_singlestep(p, regs);
	kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}

/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "breakpoint"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 */
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{
	/* we may need to fixup regs/stack after singlestepping a call insn */
	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) {
		regs->pc = cur_kprobe_orig_pc;
		switch (p->ainsn.insn[0]) {
		case 0xcd:	/* CALL (d16,PC) */
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
			break;
		case 0xdd:	/* CALL (d32,PC) */
			/* fixup mdr and return address on stack */
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
			break;
		case 0xf0:
			if (p->ainsn.insn[1] >= 0xf0 &&
			    p->ainsn.insn[1] <= 0xf3) {
				/* CALLS (An) */
				/* fixup MDR and return address on stack */
				regs->mdr = regs->pc + 2;
				*(unsigned *) regs->sp = regs->mdr;
			}
			break;

		case 0xfa:	/* CALLS (d16,PC) */
			/* fixup MDR and return address on stack */
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
			break;

		case 0xfc:	/* CALLS (d32,PC) */
			/* fixup MDR and return address on stack */
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
			break;
		}
	}

	regs->pc = cur_kprobe_next_pc;
	cur_kprobe_bp_addr = 0;
}

static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
{
	if (!kprobe_running())
		return 0;

	if (cur_kprobe->post_handler)
		cur_kprobe->post_handler(cur_kprobe, regs, 0);

	resume_execution(cur_kprobe, regs);
	reset_current_kprobe();
	preempt_enable_no_resched();
	return 1;
}

/* Interrupts disabled, kprobe_lock held. */
static inline
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
	if (cur_kprobe->fault_handler &&
	    cur_kprobe->fault_handler(cur_kprobe, regs, trapnr))
		return 1;

	if (kprobe_status & KPROBE_HIT_SS) {
		resume_execution(cur_kprobe, regs);
		reset_current_kprobe();
		preempt_enable_no_resched();
	}
	return 0;
}

/*
 * Wrapper routine to for handling exceptions.
 */
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
{
	struct die_args *args = data;

	switch (val) {
	case DIE_BREAKPOINT:
		if (cur_kprobe_bp_addr != args->regs->pc) {
			if (kprobe_handler(args->regs))
				return NOTIFY_STOP;
		} else {
			if (post_kprobe_handler(args->regs))
				return NOTIFY_STOP;
		}
		break;
	case DIE_GPF:
		if (kprobe_running() &&
		    kprobe_fault_handler(args->regs, args->trapnr))
			return NOTIFY_STOP;
		break;
	default:
		break;
	}
	return NOTIFY_DONE;
}

/* Jprobes support.  */
static struct pt_regs jprobe_saved_regs;
static struct pt_regs *jprobe_saved_regs_location;
static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];

int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);

	jprobe_saved_regs_location = regs;
	memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));

	/* Save a whole stack frame, this gets arguments
	 * pushed onto the stack after using up all the
	 * arg registers.
	 */
	memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));

	/* setup return addr to the jprobe handler routine */
	regs->pc = (unsigned long) jp->entry;
	return 1;
}

void __kprobes jprobe_return(void)
{
	void *orig_sp = jprobe_saved_regs_location + 1;

	preempt_enable_no_resched();
	asm volatile("		mov	%0,sp\n"
		     ".globl	jprobe_return_bp_addr\n"
		     "jprobe_return_bp_addr:\n\t"
		     "		.byte	0xff\n"
		     : : "d" (orig_sp));
}

extern void jprobe_return_bp_addr(void);

int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	u8 *addr = (u8 *) regs->pc;

	if (addr == (u8 *) jprobe_return_bp_addr) {
		if (jprobe_saved_regs_location != regs) {
			printk(KERN_ERR"JPROBE:"
			       " Current regs (%p) does not match saved regs"
			       " (%p).\n",
			       regs, jprobe_saved_regs_location);
			BUG();
		}

		/* Restore old register state.
		 */
		memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));

		memcpy(regs + 1, &jprobe_saved_stack,
		       sizeof(jprobe_saved_stack));
		return 1;
	}
	return 0;
}

int __init arch_init_kprobes(void)
{
	return 0;
}