Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*
 * GPL HEADER START
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 only,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License version 2 for more details (a copy is included
 * in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU General Public License
 * version 2 along with this program; If not, see
 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 * GPL HEADER END
 */
/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * Copyright (c) 2011, 2012, Intel Corporation.
 */
/*
 * This file is part of Lustre, http://www.lustre.org/
 * Lustre is a trademark of Sun Microsystems, Inc.
 *
 * lustre/ptlrpc/ptlrpcd.c
 */

/** \defgroup ptlrpcd PortalRPC daemon
 *
 * ptlrpcd is a special thread with its own set where other user might add
 * requests when they don't want to wait for their completion.
 * PtlRPCD will take care of sending such requests and then processing their
 * replies and calling completion callbacks as necessary.
 * The callbacks are called directly from ptlrpcd context.
 * It is important to never significantly block (esp. on RPCs!) within such
 * completion handler or a deadlock might occur where ptlrpcd enters some
 * callback that attempts to send another RPC and wait for it to return,
 * during which time ptlrpcd is completely blocked, so e.g. if import
 * fails, recovery cannot progress because connection requests are also
 * sent by ptlrpcd.
 *
 * @{
 */

#define DEBUG_SUBSYSTEM S_RPC

#include "../../include/linux/libcfs/libcfs.h"

#include "../include/lustre_net.h"
#include "../include/lustre_lib.h"
#include "../include/lustre_ha.h"
#include "../include/obd_class.h"	/* for obd_zombie */
#include "../include/obd_support.h"	/* for OBD_FAIL_CHECK */
#include "../include/cl_object.h"	/* cl_env_{get,put}() */
#include "../include/lprocfs_status.h"

#include "ptlrpc_internal.h"

/* One of these per CPT. */
struct ptlrpcd {
	int pd_size;
	int pd_index;
	int pd_cpt;
	int pd_cursor;
	int pd_nthreads;
	int pd_groupsize;
	struct ptlrpcd_ctl pd_threads[0];
};

/*
 * max_ptlrpcds is obsolete, but retained to ensure that the kernel
 * module will load on a system where it has been tuned.
 * A value other than 0 implies it was tuned, in which case the value
 * is used to derive a setting for ptlrpcd_per_cpt_max.
 */
static int max_ptlrpcds;
module_param(max_ptlrpcds, int, 0644);
MODULE_PARM_DESC(max_ptlrpcds, "Max ptlrpcd thread count to be started.");

/*
 * ptlrpcd_bind_policy is obsolete, but retained to ensure that
 * the kernel module will load on a system where it has been tuned.
 * A value other than 0 implies it was tuned, in which case the value
 * is used to derive a setting for ptlrpcd_partner_group_size.
 */
static int ptlrpcd_bind_policy;
module_param(ptlrpcd_bind_policy, int, 0644);
MODULE_PARM_DESC(ptlrpcd_bind_policy,
		 "Ptlrpcd threads binding mode (obsolete).");

/*
 * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
 * in a CPT.
 */
static int ptlrpcd_per_cpt_max;
module_param(ptlrpcd_per_cpt_max, int, 0644);
MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
		 "Max ptlrpcd thread count to be started per cpt.");

/*
 * ptlrpcd_partner_group_size: The desired number of threads in each
 * ptlrpcd partner thread group. Default is 2, corresponding to the
 * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
 * a CPT partners of each other.
 */
static int ptlrpcd_partner_group_size;
module_param(ptlrpcd_partner_group_size, int, 0644);
MODULE_PARM_DESC(ptlrpcd_partner_group_size,
		 "Number of ptlrpcd threads in a partner group.");

/*
 * ptlrpcd_cpts: A CPT string describing the CPU partitions that
 * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
 * a subset of all CPTs.
 *
 * ptlrpcd_cpts=2
 * ptlrpcd_cpts=[2]
 *   run ptlrpcd threads only on CPT 2.
 *
 * ptlrpcd_cpts=0-3
 * ptlrpcd_cpts=[0-3]
 *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
 *
 * ptlrpcd_cpts=[0-3,5,7]
 *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
 */
static char *ptlrpcd_cpts;
module_param(ptlrpcd_cpts, charp, 0644);
MODULE_PARM_DESC(ptlrpcd_cpts,
		 "CPU partitions ptlrpcd threads should run in");

/* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
static int		*ptlrpcds_cpt_idx;

/* ptlrpcds_num is the number of entries in the ptlrpcds array. */
static int		ptlrpcds_num;
static struct ptlrpcd	**ptlrpcds;

/*
 * In addition to the regular thread pool above, there is a single
 * global recovery thread. Recovery isn't critical for performance,
 * and doesn't block, but must always be able to proceed, and it is
 * possible that all normal ptlrpcd threads are blocked. Hence the
 * need for a dedicated thread.
 */
static struct ptlrpcd_ctl ptlrpcd_rcv;

struct mutex ptlrpcd_mutex;
static int ptlrpcd_users;

void ptlrpcd_wake(struct ptlrpc_request *req)
{
	struct ptlrpc_request_set *rq_set = req->rq_set;

	LASSERT(rq_set != NULL);

	wake_up(&rq_set->set_waitq);
}
EXPORT_SYMBOL(ptlrpcd_wake);

static struct ptlrpcd_ctl *
ptlrpcd_select_pc(struct ptlrpc_request *req)
{
	struct ptlrpcd	*pd;
	int		cpt;
	int		idx;

	if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
		return &ptlrpcd_rcv;

	cpt = cfs_cpt_current(cfs_cpt_table, 1);
	if (!ptlrpcds_cpt_idx)
		idx = cpt;
	else
		idx = ptlrpcds_cpt_idx[cpt];
	pd = ptlrpcds[idx];

		/* We do not care whether it is strict load balance. */
	idx = pd->pd_cursor;
	if (++idx == pd->pd_nthreads)
		idx = 0;
	pd->pd_cursor = idx;

	return &pd->pd_threads[idx];
}

/**
 * Return transferred RPCs count.
 */
static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
			       struct ptlrpc_request_set *src)
{
	struct list_head *tmp, *pos;
	struct ptlrpc_request *req;
	int rc = 0;

	spin_lock(&src->set_new_req_lock);
	if (likely(!list_empty(&src->set_new_requests))) {
		list_for_each_safe(pos, tmp, &src->set_new_requests) {
			req = list_entry(pos, struct ptlrpc_request,
					     rq_set_chain);
			req->rq_set = des;
		}
		list_splice_init(&src->set_new_requests,
				     &des->set_requests);
		rc = atomic_read(&src->set_new_count);
		atomic_add(rc, &des->set_remaining);
		atomic_set(&src->set_new_count, 0);
	}
	spin_unlock(&src->set_new_req_lock);
	return rc;
}

/**
 * Requests that are added to the ptlrpcd queue are sent via
 * ptlrpcd_check->ptlrpc_check_set().
 */
void ptlrpcd_add_req(struct ptlrpc_request *req)
{
	struct ptlrpcd_ctl *pc;

	if (req->rq_reqmsg)
		lustre_msg_set_jobid(req->rq_reqmsg, NULL);

	spin_lock(&req->rq_lock);
	if (req->rq_invalid_rqset) {
		struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
						     back_to_sleep, NULL);

		req->rq_invalid_rqset = 0;
		spin_unlock(&req->rq_lock);
		l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
	} else if (req->rq_set) {
		/* If we have a valid "rq_set", just reuse it to avoid double
		 * linked. */
		LASSERT(req->rq_phase == RQ_PHASE_NEW);
		LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);

		/* ptlrpc_check_set will decrease the count */
		atomic_inc(&req->rq_set->set_remaining);
		spin_unlock(&req->rq_lock);
		wake_up(&req->rq_set->set_waitq);
		return;
	} else {
		spin_unlock(&req->rq_lock);
	}

	pc = ptlrpcd_select_pc(req);

	DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
		  req, pc->pc_name, pc->pc_index);

	ptlrpc_set_add_new_req(pc, req);
}
EXPORT_SYMBOL(ptlrpcd_add_req);

static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
{
	atomic_inc(&set->set_refcount);
}

/**
 * Check if there is more work to do on ptlrpcd set.
 * Returns 1 if yes.
 */
static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
{
	struct list_head *tmp, *pos;
	struct ptlrpc_request *req;
	struct ptlrpc_request_set *set = pc->pc_set;
	int rc = 0;
	int rc2;

	if (atomic_read(&set->set_new_count)) {
		spin_lock(&set->set_new_req_lock);
		if (likely(!list_empty(&set->set_new_requests))) {
			list_splice_init(&set->set_new_requests,
					     &set->set_requests);
			atomic_add(atomic_read(&set->set_new_count),
				       &set->set_remaining);
			atomic_set(&set->set_new_count, 0);
			/*
			 * Need to calculate its timeout.
			 */
			rc = 1;
		}
		spin_unlock(&set->set_new_req_lock);
	}

	/* We should call lu_env_refill() before handling new requests to make
	 * sure that env key the requests depending on really exists.
	 */
	rc2 = lu_env_refill(env);
	if (rc2 != 0) {
		/*
		 * XXX This is very awkward situation, because
		 * execution can neither continue (request
		 * interpreters assume that env is set up), nor repeat
		 * the loop (as this potentially results in a tight
		 * loop of -ENOMEM's).
		 *
		 * Fortunately, refill only ever does something when
		 * new modules are loaded, i.e., early during boot up.
		 */
		CERROR("Failure to refill session: %d\n", rc2);
		return rc;
	}

	if (atomic_read(&set->set_remaining))
		rc |= ptlrpc_check_set(env, set);

	/* NB: ptlrpc_check_set has already moved completed request at the
	 * head of seq::set_requests */
	list_for_each_safe(pos, tmp, &set->set_requests) {
		req = list_entry(pos, struct ptlrpc_request, rq_set_chain);
		if (req->rq_phase != RQ_PHASE_COMPLETE)
			break;

		list_del_init(&req->rq_set_chain);
		req->rq_set = NULL;
		ptlrpc_req_finished(req);
	}

	if (rc == 0) {
		/*
		 * If new requests have been added, make sure to wake up.
		 */
		rc = atomic_read(&set->set_new_count);

		/* If we have nothing to do, check whether we can take some
		 * work from our partner threads. */
		if (rc == 0 && pc->pc_npartners > 0) {
			struct ptlrpcd_ctl *partner;
			struct ptlrpc_request_set *ps;
			int first = pc->pc_cursor;

			do {
				partner = pc->pc_partners[pc->pc_cursor++];
				if (pc->pc_cursor >= pc->pc_npartners)
					pc->pc_cursor = 0;
				if (partner == NULL)
					continue;

				spin_lock(&partner->pc_lock);
				ps = partner->pc_set;
				if (ps == NULL) {
					spin_unlock(&partner->pc_lock);
					continue;
				}

				ptlrpc_reqset_get(ps);
				spin_unlock(&partner->pc_lock);

				if (atomic_read(&ps->set_new_count)) {
					rc = ptlrpcd_steal_rqset(set, ps);
					if (rc > 0)
						CDEBUG(D_RPCTRACE, "transfer %d async RPCs [%d->%d]\n",
						       rc, partner->pc_index,
						       pc->pc_index);
				}
				ptlrpc_reqset_put(ps);
			} while (rc == 0 && pc->pc_cursor != first);
		}
	}

	return rc;
}

/**
 * Main ptlrpcd thread.
 * ptlrpc's code paths like to execute in process context, so we have this
 * thread which spins on a set which contains the rpcs and sends them.
 *
 */
static int ptlrpcd(void *arg)
{
	struct ptlrpcd_ctl *pc = arg;
	struct ptlrpc_request_set *set;
	struct lu_env env = { .le_ses = NULL };
	int rc = 0;
	int exit = 0;

	unshare_fs_struct();
	if (cfs_cpt_bind(cfs_cpt_table, pc->pc_cpt) != 0)
		CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);

	/*
	 * Allocate the request set after the thread has been bound
	 * above. This is safe because no requests will be queued
	 * until all ptlrpcd threads have confirmed that they have
	 * successfully started.
	 */
	set = ptlrpc_prep_set();
	if (!set) {
		rc = -ENOMEM;
		goto failed;
	}
	spin_lock(&pc->pc_lock);
	pc->pc_set = set;
	spin_unlock(&pc->pc_lock);
	/*
	 * XXX So far only "client" ptlrpcd uses an environment. In
	 * the future, ptlrpcd thread (or a thread-set) has to given
	 * an argument, describing its "scope".
	 */
	rc = lu_context_init(&env.le_ctx,
			     LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
	if (rc != 0)
		goto failed;

	complete(&pc->pc_starting);

	/*
	 * This mainloop strongly resembles ptlrpc_set_wait() except that our
	 * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
	 * there are requests in the set. New requests come in on the set's
	 * new_req_list and ptlrpcd_check() moves them into the set.
	 */
	do {
		struct l_wait_info lwi;
		int timeout;

		timeout = ptlrpc_set_next_timeout(set);
		lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
				  ptlrpc_expired_set, set);

		lu_context_enter(&env.le_ctx);
		l_wait_event(set->set_waitq,
			     ptlrpcd_check(&env, pc), &lwi);
		lu_context_exit(&env.le_ctx);

		/*
		 * Abort inflight rpcs for forced stop case.
		 */
		if (test_bit(LIOD_STOP, &pc->pc_flags)) {
			if (test_bit(LIOD_FORCE, &pc->pc_flags))
				ptlrpc_abort_set(set);
			exit++;
		}

		/*
		 * Let's make one more loop to make sure that ptlrpcd_check()
		 * copied all raced new rpcs into the set so we can kill them.
		 */
	} while (exit < 2);

	/*
	 * Wait for inflight requests to drain.
	 */
	if (!list_empty(&set->set_requests))
		ptlrpc_set_wait(set);
	lu_context_fini(&env.le_ctx);

	complete(&pc->pc_finishing);

	return 0;
failed:
	pc->pc_error = rc;
	complete(&pc->pc_starting);
	return rc;
}

static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
{
	pc->pc_index = index;
	pc->pc_cpt = cpt;
	init_completion(&pc->pc_starting);
	init_completion(&pc->pc_finishing);
	spin_lock_init(&pc->pc_lock);

	if (index < 0) {
		/* Recovery thread. */
		snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
	} else {
		/* Regular thread. */
		snprintf(pc->pc_name, sizeof(pc->pc_name),
			 "ptlrpcd_%02d_%02d", cpt, index);
	}
}

/* XXX: We want multiple CPU cores to share the async RPC load. So we
 *	start many ptlrpcd threads. We also want to reduce the ptlrpcd
 *	overhead caused by data transfer cross-CPU cores. So we bind
 *	all ptlrpcd threads to a CPT, in the expectation that CPTs
 *	will be defined in a way that matches these boundaries. Within
 *	a CPT a ptlrpcd thread can be scheduled on any available core.
 *
 *	Each ptlrpcd thread has its own request queue. This can cause
 *	response delay if the thread is already busy. To help with
 *	this we define partner threads: these are other threads bound
 *	to the same CPT which will check for work in each other's
 *	request queues if they have no work to do.
 *
 *	The desired number of partner threads can be tuned by setting
 *	ptlrpcd_partner_group_size. The default is to create pairs of
 *	partner threads.
 */
static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
{
	struct ptlrpcd_ctl *pc;
	struct ptlrpcd_ctl **ppc;
	int first;
	int i;
	int rc = 0;
	int size;

	LASSERT(index >= 0 && index < pd->pd_nthreads);
	pc = &pd->pd_threads[index];
	pc->pc_npartners = pd->pd_groupsize - 1;

	if (pc->pc_npartners <= 0)
		goto out;

	size = sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners;
	pc->pc_partners = kzalloc_node(size, GFP_NOFS,
				       cfs_cpt_spread_node(cfs_cpt_table,
							   pc->pc_cpt));
	if (!pc->pc_partners) {
		pc->pc_npartners = 0;
		rc = -ENOMEM;
		goto out;
	}

	first = index - index % pd->pd_groupsize;
	ppc = pc->pc_partners;
	for (i = first; i < first + pd->pd_groupsize; i++) {
		if (i != index)
			*ppc++ = &pd->pd_threads[i];
	}
out:
	return rc;
}

int ptlrpcd_start(struct ptlrpcd_ctl *pc)
{
	struct task_struct *task;
	int rc = 0;

	/*
	 * Do not allow start second thread for one pc.
	 */
	if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Starting second thread (%s) for same pc %p\n",
		      pc->pc_name, pc);
		return 0;
	}

	/*
	 * So far only "client" ptlrpcd uses an environment. In the future,
	 * ptlrpcd thread (or a thread-set) has to be given an argument,
	 * describing its "scope".
	 */
	rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
	if (rc != 0)
		goto out;

	task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
	if (IS_ERR(task)) {
		rc = PTR_ERR(task);
		goto out_set;
	}

	wait_for_completion(&pc->pc_starting);
	rc = pc->pc_error;
	if (rc != 0)
		goto out_set;

	return 0;

out_set:
	if (pc->pc_set != NULL) {
		struct ptlrpc_request_set *set = pc->pc_set;

		spin_lock(&pc->pc_lock);
		pc->pc_set = NULL;
		spin_unlock(&pc->pc_lock);
		ptlrpc_set_destroy(set);
	}
	lu_context_fini(&pc->pc_env.le_ctx);

out:
	clear_bit(LIOD_START, &pc->pc_flags);
	return rc;
}

void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
{
	if (!test_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Thread for pc %p was not started\n", pc);
		return;
	}

	set_bit(LIOD_STOP, &pc->pc_flags);
	if (force)
		set_bit(LIOD_FORCE, &pc->pc_flags);
	wake_up(&pc->pc_set->set_waitq);
}

void ptlrpcd_free(struct ptlrpcd_ctl *pc)
{
	struct ptlrpc_request_set *set = pc->pc_set;

	if (!test_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Thread for pc %p was not started\n", pc);
		goto out;
	}

	wait_for_completion(&pc->pc_finishing);
	lu_context_fini(&pc->pc_env.le_ctx);

	spin_lock(&pc->pc_lock);
	pc->pc_set = NULL;
	spin_unlock(&pc->pc_lock);
	ptlrpc_set_destroy(set);

	clear_bit(LIOD_START, &pc->pc_flags);
	clear_bit(LIOD_STOP, &pc->pc_flags);
	clear_bit(LIOD_FORCE, &pc->pc_flags);

out:
	if (pc->pc_npartners > 0) {
		LASSERT(pc->pc_partners != NULL);

		kfree(pc->pc_partners);
		pc->pc_partners = NULL;
	}
	pc->pc_npartners = 0;
	pc->pc_error = 0;
}

static void ptlrpcd_fini(void)
{
	int i;
	int j;

	if (ptlrpcds != NULL) {
		for (i = 0; i < ptlrpcds_num; i++) {
			if (!ptlrpcds[i])
				break;
			for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
				ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
			for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
				ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
			kfree(ptlrpcds[i]);
			ptlrpcds[i] = NULL;
		}
		kfree(ptlrpcds);
	}
	ptlrpcds_num = 0;

	ptlrpcd_stop(&ptlrpcd_rcv, 0);
	ptlrpcd_free(&ptlrpcd_rcv);

	kfree(ptlrpcds_cpt_idx);
	ptlrpcds_cpt_idx = NULL;
}

static int ptlrpcd_init(void)
{
	int nthreads;
	int groupsize;
	int size;
	int i;
	int j;
	int rc = 0;
	struct cfs_cpt_table *cptable;
	__u32 *cpts = NULL;
	int ncpts;
	int cpt;
	struct ptlrpcd *pd;

	/*
	 * Determine the CPTs that ptlrpcd threads will run on.
	 */
	cptable = cfs_cpt_table;
	ncpts = cfs_cpt_number(cptable);
	if (ptlrpcd_cpts) {
		struct cfs_expr_list *el;

		size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
		ptlrpcds_cpt_idx = kzalloc(size, GFP_KERNEL);
		if (!ptlrpcds_cpt_idx) {
			rc = -ENOMEM;
			goto out;
		}

		rc = cfs_expr_list_parse(ptlrpcd_cpts,
					 strlen(ptlrpcd_cpts),
					 0, ncpts - 1, &el);

		if (rc != 0) {
			CERROR("ptlrpcd_cpts: invalid CPT pattern string: %s",
			       ptlrpcd_cpts);
			rc = -EINVAL;
			goto out;
		}

		rc = cfs_expr_list_values(el, ncpts, &cpts);
		cfs_expr_list_free(el);
		if (rc <= 0) {
			CERROR("ptlrpcd_cpts: failed to parse CPT array %s: %d\n",
			       ptlrpcd_cpts, rc);
			if (rc == 0)
				rc = -EINVAL;
			goto out;
		}

		/*
		 * Create the cpt-to-index map. When there is no match
		 * in the cpt table, pick a cpt at random. This could
		 * be changed to take the topology of the system into
		 * account.
		 */
		for (cpt = 0; cpt < ncpts; cpt++) {
			for (i = 0; i < rc; i++)
				if (cpts[i] == cpt)
					break;
			if (i >= rc)
				i = cpt % rc;
			ptlrpcds_cpt_idx[cpt] = i;
		}

		cfs_expr_list_values_free(cpts, rc);
		ncpts = rc;
	}
	ptlrpcds_num = ncpts;

	size = ncpts * sizeof(ptlrpcds[0]);
	ptlrpcds = kzalloc(size, GFP_KERNEL);
	if (!ptlrpcds) {
		rc = -ENOMEM;
		goto out;
	}

	/*
	 * The max_ptlrpcds parameter is obsolete, but do something
	 * sane if it has been tuned, and complain if
	 * ptlrpcd_per_cpt_max has also been tuned.
	 */
	if (max_ptlrpcds != 0) {
		CWARN("max_ptlrpcds is obsolete.\n");
		if (ptlrpcd_per_cpt_max == 0) {
			ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
			/* Round up if there is a remainder. */
			if (max_ptlrpcds % ncpts != 0)
				ptlrpcd_per_cpt_max++;
			CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
			      ptlrpcd_per_cpt_max);
		} else {
			CWARN("ptlrpd_per_cpt_max is also set!\n");
		}
	}

	/*
	 * The ptlrpcd_bind_policy parameter is obsolete, but do
	 * something sane if it has been tuned, and complain if
	 * ptlrpcd_partner_group_size is also tuned.
	 */
	if (ptlrpcd_bind_policy != 0) {
		CWARN("ptlrpcd_bind_policy is obsolete.\n");
		if (ptlrpcd_partner_group_size == 0) {
			switch (ptlrpcd_bind_policy) {
			case 1: /* PDB_POLICY_NONE */
			case 2: /* PDB_POLICY_FULL */
				ptlrpcd_partner_group_size = 1;
				break;
			case 3: /* PDB_POLICY_PAIR */
				ptlrpcd_partner_group_size = 2;
				break;
			case 4: /* PDB_POLICY_NEIGHBOR */
#ifdef CONFIG_NUMA
				ptlrpcd_partner_group_size = -1; /* CPT */
#else
				ptlrpcd_partner_group_size = 3; /* Triplets */
#endif
				break;
			default: /* Illegal value, use the default. */
				ptlrpcd_partner_group_size = 2;
				break;
			}
			CWARN("Setting ptlrpcd_partner_group_size = %d\n",
			      ptlrpcd_partner_group_size);
		} else {
			CWARN("ptlrpcd_partner_group_size is also set!\n");
		}
	}

	if (ptlrpcd_partner_group_size == 0)
		ptlrpcd_partner_group_size = 2;
	else if (ptlrpcd_partner_group_size < 0)
		ptlrpcd_partner_group_size = -1;
	else if (ptlrpcd_per_cpt_max > 0 &&
		 ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
		ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;

	/*
	 * Start the recovery thread first.
	 */
	set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
	ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
	rc = ptlrpcd_start(&ptlrpcd_rcv);
	if (rc < 0)
		goto out;

	for (i = 0; i < ncpts; i++) {
		if (!cpts)
			cpt = i;
		else
			cpt = cpts[i];

		nthreads = cfs_cpt_weight(cptable, cpt);
		if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
			nthreads = ptlrpcd_per_cpt_max;
		if (nthreads < 2)
			nthreads = 2;

		if (ptlrpcd_partner_group_size <= 0) {
			groupsize = nthreads;
		} else if (nthreads <= ptlrpcd_partner_group_size) {
			groupsize = nthreads;
		} else {
			groupsize = ptlrpcd_partner_group_size;
			if (nthreads % groupsize != 0)
				nthreads += groupsize - (nthreads % groupsize);
		}

		size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
		pd = kzalloc_node(size, GFP_NOFS,
				  cfs_cpt_spread_node(cfs_cpt_table, cpt));
		if (!pd) {
			rc = -ENOMEM;
			goto out;
		}
		pd->pd_size = size;
		pd->pd_index = i;
		pd->pd_cpt = cpt;
		pd->pd_cursor = 0;
		pd->pd_nthreads = nthreads;
		pd->pd_groupsize = groupsize;
		ptlrpcds[i] = pd;

		/*
		 * The ptlrpcd threads in a partner group can access
		 * each other's struct ptlrpcd_ctl, so these must be
		 * initialized before any thread is started.
		 */
		for (j = 0; j < nthreads; j++) {
			ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
			rc = ptlrpcd_partners(pd, j);
			if (rc < 0)
				goto out;
		}

		/* XXX: We start nthreads ptlrpc daemons.
		 *	Each of them can process any non-recovery
		 *	async RPC to improve overall async RPC
		 *	efficiency.
		 *
		 *	But there are some issues with async I/O RPCs
		 *	and async non-I/O RPCs processed in the same
		 *	set under some cases. The ptlrpcd may be
		 *	blocked by some async I/O RPC(s), then will
		 *	cause other async non-I/O RPC(s) can not be
		 *	processed in time.
		 *
		 *	Maybe we should distinguish blocked async RPCs
		 *	from non-blocked async RPCs, and process them
		 *	in different ptlrpcd sets to avoid unnecessary
		 *	dependency. But how to distribute async RPCs
		 *	load among all the ptlrpc daemons becomes
		 *	another trouble.
		 */
		for (j = 0; j < nthreads; j++) {
			rc = ptlrpcd_start(&pd->pd_threads[j]);
			if (rc < 0)
				goto out;
		}
	}
out:
	if (rc != 0)
		ptlrpcd_fini();

	return rc;
}

int ptlrpcd_addref(void)
{
	int rc = 0;

	mutex_lock(&ptlrpcd_mutex);
	if (++ptlrpcd_users == 1)
		rc = ptlrpcd_init();
	mutex_unlock(&ptlrpcd_mutex);
	return rc;
}
EXPORT_SYMBOL(ptlrpcd_addref);

void ptlrpcd_decref(void)
{
	mutex_lock(&ptlrpcd_mutex);
	if (--ptlrpcd_users == 0)
		ptlrpcd_fini();
	mutex_unlock(&ptlrpcd_mutex);
}
EXPORT_SYMBOL(ptlrpcd_decref);
/** @} ptlrpcd */