Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
/*
 * core.h - DesignWare HS OTG Controller common declarations
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __DWC2_CORE_H__
#define __DWC2_CORE_H__

#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/phy.h>
#include "hw.h"

/*
 * Suggested defines for tracers:
 * - no_printk:    Disable tracing
 * - pr_info:      Print this info to the console
 * - trace_printk: Print this info to trace buffer (good for verbose logging)
 */

#define DWC2_TRACE_SCHEDULER		no_printk
#define DWC2_TRACE_SCHEDULER_VB		no_printk

/* Detailed scheduler tracing, but won't overwhelm console */
#define dwc2_sch_dbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
			     dev_name(hsotg->dev), ##__VA_ARGS__)

/* Verbose scheduler tracing */
#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
				dev_name(hsotg->dev), ##__VA_ARGS__)

#ifdef CONFIG_MIPS
/*
 * There are some MIPS machines that can run in either big-endian
 * or little-endian mode and that use the dwc2 register without
 * a byteswap in both ways.
 * Unlike other architectures, MIPS apparently does not require a
 * barrier before the __raw_writel() to synchronize with DMA but does
 * require the barrier after the __raw_writel() to serialize a set of
 * writes. This set of operations was added specifically for MIPS and
 * should only be used there.
 */
static inline u32 dwc2_readl(const void __iomem *addr)
{
	u32 value = __raw_readl(addr);

	/* In order to preserve endianness __raw_* operation is used. Therefore
	 * a barrier is needed to ensure IO access is not re-ordered across
	 * reads or writes
	 */
	mb();
	return value;
}

static inline void dwc2_writel(u32 value, void __iomem *addr)
{
	__raw_writel(value, addr);

	/*
	 * In order to preserve endianness __raw_* operation is used. Therefore
	 * a barrier is needed to ensure IO access is not re-ordered across
	 * reads or writes
	 */
	mb();
#ifdef DWC2_LOG_WRITES
	pr_info("INFO:: wrote %08x to %p\n", value, addr);
#endif
}
#else
/* Normal architectures just use readl/write */
static inline u32 dwc2_readl(const void __iomem *addr)
{
	return readl(addr);
}

static inline void dwc2_writel(u32 value, void __iomem *addr)
{
	writel(value, addr);

#ifdef DWC2_LOG_WRITES
	pr_info("info:: wrote %08x to %p\n", value, addr);
#endif
}
#endif

/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS	16

/* dwc2-hsotg declarations */
static const char * const dwc2_hsotg_supply_names[] = {
	"vusb_d",               /* digital USB supply, 1.2V */
	"vusb_a",               /* analog USB supply, 1.1V */
};

#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)

/*
 * EP0_MPS_LIMIT
 *
 * Unfortunately there seems to be a limit of the amount of data that can
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT   64

struct dwc2_hsotg;
struct dwc2_hsotg_req;

/**
 * struct dwc2_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *       awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *          means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @mc: Multi Count - number of transactions per microframe
 * @interval - Interval for periodic endpoints, in frames or microframes.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @isochronous: Set if this is a isochronous ep
 * @send_zlp: Set if we need to send a zero-length packet.
 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 * @target_frame: Targeted frame num to setup next ISOC transfer
 * @frame_overrun: Indicates SOF number overrun in DSTS
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
 */
struct dwc2_hsotg_ep {
	struct usb_ep           ep;
	struct list_head        queue;
	struct dwc2_hsotg       *parent;
	struct dwc2_hsotg_req    *req;
	struct dentry           *debugfs;

	unsigned long           total_data;
	unsigned int            size_loaded;
	unsigned int            last_load;
	unsigned int            fifo_load;
	unsigned short          fifo_size;
	unsigned short		fifo_index;

	unsigned char           dir_in;
	unsigned char           index;
	unsigned char           mc;
	unsigned char           interval;

	unsigned int            halted:1;
	unsigned int            periodic:1;
	unsigned int            isochronous:1;
	unsigned int            send_zlp:1;
	unsigned int            target_frame;
#define TARGET_FRAME_INITIAL   0xFFFFFFFF
	bool			frame_overrun;

	dma_addr_t		desc_list_dma;
	struct dwc2_dma_desc	*desc_list;
	u8			desc_count;

	unsigned char		isoc_chain_num;
	unsigned int		next_desc;

	char                    name[10];
};

/**
 * struct dwc2_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 */
struct dwc2_hsotg_req {
	struct usb_request      req;
	struct list_head        queue;
	void *saved_req_buf;
};

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
#define call_gadget(_hs, _entry) \
do { \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
		(_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
	} \
} while (0)
#else
#define call_gadget(_hs, _entry)	do {} while (0)
#endif

struct dwc2_hsotg;
struct dwc2_host_chan;

/* Device States */
enum dwc2_lx_state {
	DWC2_L0,	/* On state */
	DWC2_L1,	/* LPM sleep state */
	DWC2_L2,	/* USB suspend state */
	DWC2_L3,	/* Off state */
};

/* Gadget ep0 states */
enum dwc2_ep0_state {
	DWC2_EP0_SETUP,
	DWC2_EP0_DATA_IN,
	DWC2_EP0_DATA_OUT,
	DWC2_EP0_STATUS_IN,
	DWC2_EP0_STATUS_OUT,
};

/**
 * struct dwc2_core_params - Parameters for configuring the core
 *
 * @otg_cap:            Specifies the OTG capabilities.
 *                       0 - HNP and SRP capable
 *                       1 - SRP Only capable
 *                       2 - No HNP/SRP capable (always available)
 *                      Defaults to best available option (0, 1, then 2)
 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this parameter if none is specified.
 *                       0 - Slave (always available)
 *                       1 - DMA (default, if available)
 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this if none is specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA (default, if available)
 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs in Full Speed mode only. The driver
 *                      will automatically detect the value for this if none is
 *                      specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA in FS (default, if available)
 * @speed:              Specifies the maximum speed of operation in host and
 *                      device mode. The actual speed depends on the speed of
 *                      the attached device and the value of phy_type.
 *                       0 - High Speed
 *                           (default when phy_type is UTMI+ or ULPI)
 *                       1 - Full Speed
 *                           (default when phy_type is Full Speed)
 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 *                       1 - Allow dynamic FIFO sizing (default, if available)
 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 *                      are enabled for non-periodic IN endpoints in device
 *                      mode.
 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 *                      dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 *                      in host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 *                      host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_transfer_size:  The maximum transfer size supported, in bytes
 *                       2047 to 65,535
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_packet_count:   The maximum number of packets in a transfer
 *                       15 to 511
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_channels:      The number of host channel registers to use
 *                       1 to 16
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @phy_type:           Specifies the type of PHY interface to use. By default,
 *                      the driver will automatically detect the phy_type.
 *                       0 - Full Speed Phy
 *                       1 - UTMI+ Phy
 *                       2 - ULPI Phy
 *                      Defaults to best available option (2, 1, then 0)
 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 *                      ULPI phy_type, this parameter indicates the data width
 *                      between the MAC and the ULPI Wrapper.) Also, this
 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 *                      parameter was set to "8 and 16 bits", meaning that the
 *                      core has been configured to work at either data path
 *                      width.
 *                       8 or 16 (default 16 if available)
 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 *                      data rate. This parameter is only applicable if phy_type
 *                      is ULPI.
 *                       0 - single data rate ULPI interface with 8 bit wide
 *                           data bus (default)
 *                       1 - double data rate ULPI interface with 4 bit wide
 *                           data bus
 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 *                      external supply to drive the VBus
 *                       0 - Internal supply (default)
 *                       1 - External supply
 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 *                      speed PHY. This parameter is only applicable if phy_type
 *                      is FS.
 *                       0 - No (default)
 *                       1 - Yes
 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 *                       0 - No (default)
 *                       1 - Yes
 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 *                      when attached to a Full Speed or Low Speed device in
 *                      host mode.
 *                       0 - Don't support low power mode (default)
 *                       1 - Support low power mode
 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 *                      when connected to a Low Speed device in host
 *                      mode. This parameter is applicable only if
 *                      host_support_fs_ls_low_power is enabled.
 *                       0 - 48 MHz
 *                           (default when phy_type is UTMI+ or ULPI)
 *                       1 - 6 MHz
 *                           (default when phy_type is Full Speed)
 * @ts_dline:           Enable Term Select Dline pulsing
 *                       0 - No (default)
 *                       1 - Yes
 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 *                       0 - No (default for core < 2.92a)
 *                       1 - Yes (default for core >= 2.92a)
 * @ahbcfg:             This field allows the default value of the GAHBCFG
 *                      register to be overridden
 *                       -1         - GAHBCFG value will be set to 0x06
 *                                    (INCR4, default)
 *                       all others - GAHBCFG value will be overridden with
 *                                    this value
 *                      Not all bits can be controlled like this, the
 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 *                      by the driver and are ignored in this
 *                      configuration value.
 * @uframe_sched:       True to enable the microframe scheduler
 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 *                      Disable CONIDSTSCHNG controller interrupt in such
 *                      case.
 *                      0 - No (default)
 *                      1 - Yes
 * @hibernation:	Specifies whether the controller support hibernation.
 *			If hibernation is enabled, the controller will enter
 *			hibernation in both peripheral and host mode when
 *			needed.
 *			0 - No (default)
 *			1 - Yes
 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 *			register.
 *			0 - Deactivate the transceiver (default)
 *			1 - Activate the transceiver
 * @g_dma:              Enables gadget dma usage (default: autodetect).
 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 *			DWORDS from 16-32768 (default: 2048 if
 *			possible, otherwise autodetect).
 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 *			DWORDS from 16-32768 (default: 1024 if
 *			possible, otherwise autodetect).
 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 *			mode. Each value corresponds to one EP
 *			starting from EP1 (max 15 values). Sizes are
 *			in DWORDS with possible values from from
 *			16-32768 (default: 256, 256, 256, 256, 768,
 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 *                      while full&low speed device connect. And change speed
 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 *			0 - No (default)
 *			1 - Yes
 *
 * The following parameters may be specified when starting the module. These
 * parameters define how the DWC_otg controller should be configured. A
 * value of -1 (or any other out of range value) for any parameter means
 * to read the value from hardware (if possible) or use the builtin
 * default described above.
 */
struct dwc2_core_params {
	u8 otg_cap;
#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2

	u8 phy_type;
#define DWC2_PHY_TYPE_PARAM_FS		0
#define DWC2_PHY_TYPE_PARAM_UTMI	1
#define DWC2_PHY_TYPE_PARAM_ULPI	2

	u8 speed;
#define DWC2_SPEED_PARAM_HIGH	0
#define DWC2_SPEED_PARAM_FULL	1
#define DWC2_SPEED_PARAM_LOW	2

	u8 phy_utmi_width;
	bool phy_ulpi_ddr;
	bool phy_ulpi_ext_vbus;
	bool enable_dynamic_fifo;
	bool en_multiple_tx_fifo;
	bool i2c_enable;
	bool ulpi_fs_ls;
	bool ts_dline;
	bool reload_ctl;
	bool uframe_sched;
	bool external_id_pin_ctl;
	bool hibernation;
	bool activate_stm_fs_transceiver;
	u16 max_packet_count;
	u32 max_transfer_size;
	u32 ahbcfg;

	/* Host parameters */
	bool host_dma;
	bool dma_desc_enable;
	bool dma_desc_fs_enable;
	bool host_support_fs_ls_low_power;
	bool host_ls_low_power_phy_clk;

	u8 host_channels;
	u16 host_rx_fifo_size;
	u16 host_nperio_tx_fifo_size;
	u16 host_perio_tx_fifo_size;

	/* Gadget parameters */
	bool g_dma;
	bool g_dma_desc;
	u32 g_rx_fifo_size;
	u32 g_np_tx_fifo_size;
	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];

	bool change_speed_quirk;
};

/**
 * struct dwc2_hw_params - Autodetected parameters.
 *
 * These parameters are the various parameters read from hardware
 * registers during initialization. They typically contain the best
 * supported or maximum value that can be configured in the
 * corresponding dwc2_core_params value.
 *
 * The values that are not in dwc2_core_params are documented below.
 *
 * @op_mode             Mode of Operation
 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 *                       1 - SRP-Capable OTG (Host & Device)
 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 *                       3 - SRP-Capable Device
 *                       4 - Non-OTG Device
 *                       5 - SRP-Capable Host
 *                       6 - Non-OTG Host
 * @arch                Architecture
 *                       0 - Slave only
 *                       1 - External DMA
 *                       2 - Internal DMA
 * @power_optimized     Are power optimizations enabled?
 * @num_dev_ep          Number of device endpoints available
 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 *                      available
 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 *                      Depth
 *                       0 to 30
 * @host_perio_tx_q_depth
 *                      Host Mode Periodic Request Queue Depth
 *                       2, 4 or 8
 * @nperio_tx_q_depth
 *                      Non-Periodic Request Queue Depth
 *                       2, 4 or 8
 * @hs_phy_type         High-speed PHY interface type
 *                       0 - High-speed interface not supported
 *                       1 - UTMI+
 *                       2 - ULPI
 *                       3 - UTMI+ and ULPI
 * @fs_phy_type         Full-speed PHY interface type
 *                       0 - Full speed interface not supported
 *                       1 - Dedicated full speed interface
 *                       2 - FS pins shared with UTMI+ pins
 *                       3 - FS pins shared with ULPI pins
 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 * @utmi_phy_data_width UTMI+ PHY data width
 *                       0 - 8 bits
 *                       1 - 16 bits
 *                       2 - 8 or 16 bits
 * @snpsid:             Value from SNPSID register
 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 */
struct dwc2_hw_params {
	unsigned op_mode:3;
	unsigned arch:2;
	unsigned dma_desc_enable:1;
	unsigned enable_dynamic_fifo:1;
	unsigned en_multiple_tx_fifo:1;
	unsigned rx_fifo_size:16;
	unsigned host_nperio_tx_fifo_size:16;
	unsigned dev_nperio_tx_fifo_size:16;
	unsigned host_perio_tx_fifo_size:16;
	unsigned nperio_tx_q_depth:3;
	unsigned host_perio_tx_q_depth:3;
	unsigned dev_token_q_depth:5;
	unsigned max_transfer_size:26;
	unsigned max_packet_count:11;
	unsigned host_channels:5;
	unsigned hs_phy_type:2;
	unsigned fs_phy_type:2;
	unsigned i2c_enable:1;
	unsigned num_dev_ep:4;
	unsigned num_dev_perio_in_ep:4;
	unsigned total_fifo_size:16;
	unsigned power_optimized:1;
	unsigned utmi_phy_data_width:2;
	u32 snpsid;
	u32 dev_ep_dirs;
};

/* Size of control and EP0 buffers */
#define DWC2_CTRL_BUFF_SIZE 8

/**
 * struct dwc2_gregs_backup - Holds global registers state before
 * entering partial power down
 * @gotgctl:		Backup of GOTGCTL register
 * @gintmsk:		Backup of GINTMSK register
 * @gahbcfg:		Backup of GAHBCFG register
 * @gusbcfg:		Backup of GUSBCFG register
 * @grxfsiz:		Backup of GRXFSIZ register
 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 * @gi2cctl:		Backup of GI2CCTL register
 * @hptxfsiz:		Backup of HPTXFSIZ register
 * @gdfifocfg:		Backup of GDFIFOCFG register
 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 * @gpwrdn:		Backup of GPWRDN register
 */
struct dwc2_gregs_backup {
	u32 gotgctl;
	u32 gintmsk;
	u32 gahbcfg;
	u32 gusbcfg;
	u32 grxfsiz;
	u32 gnptxfsiz;
	u32 gi2cctl;
	u32 hptxfsiz;
	u32 pcgcctl;
	u32 gdfifocfg;
	u32 dtxfsiz[MAX_EPS_CHANNELS];
	u32 gpwrdn;
	bool valid;
};

/**
 * struct dwc2_dregs_backup - Holds device registers state before
 * entering partial power down
 * @dcfg:		Backup of DCFG register
 * @dctl:		Backup of DCTL register
 * @daintmsk:		Backup of DAINTMSK register
 * @diepmsk:		Backup of DIEPMSK register
 * @doepmsk:		Backup of DOEPMSK register
 * @diepctl:		Backup of DIEPCTL register
 * @dieptsiz:		Backup of DIEPTSIZ register
 * @diepdma:		Backup of DIEPDMA register
 * @doepctl:		Backup of DOEPCTL register
 * @doeptsiz:		Backup of DOEPTSIZ register
 * @doepdma:		Backup of DOEPDMA register
 */
struct dwc2_dregs_backup {
	u32 dcfg;
	u32 dctl;
	u32 daintmsk;
	u32 diepmsk;
	u32 doepmsk;
	u32 diepctl[MAX_EPS_CHANNELS];
	u32 dieptsiz[MAX_EPS_CHANNELS];
	u32 diepdma[MAX_EPS_CHANNELS];
	u32 doepctl[MAX_EPS_CHANNELS];
	u32 doeptsiz[MAX_EPS_CHANNELS];
	u32 doepdma[MAX_EPS_CHANNELS];
	bool valid;
};

/**
 * struct dwc2_hregs_backup - Holds host registers state before
 * entering partial power down
 * @hcfg:		Backup of HCFG register
 * @haintmsk:		Backup of HAINTMSK register
 * @hcintmsk:		Backup of HCINTMSK register
 * @hptr0:		Backup of HPTR0 register
 * @hfir:		Backup of HFIR register
 */
struct dwc2_hregs_backup {
	u32 hcfg;
	u32 haintmsk;
	u32 hcintmsk[MAX_EPS_CHANNELS];
	u32 hprt0;
	u32 hfir;
	bool valid;
};

/*
 * Constants related to high speed periodic scheduling
 *
 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 * reservation point of view it's assumed that the schedule goes right back to
 * the beginning after the end of the schedule.
 *
 * What does that mean for scheduling things with a long interval?  It means
 * we'll reserve time for them in every possible microframe that they could
 * ever be scheduled in.  ...but we'll still only actually schedule them as
 * often as they were requested.
 *
 * We keep our schedule in a "bitmap" structure.  This simplifies having
 * to keep track of and merge intervals: we just let the bitmap code do most
 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 *
 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 * supposed to schedule for periodic transfers).  That's according to spec.
 *
 * Note that though we only schedule 80% of each microframe, the bitmap that we
 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 * space for each uFrame).
 *
 * Requirements:
 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 */
#define DWC2_US_PER_UFRAME		125
#define DWC2_HS_PERIODIC_US_PER_UFRAME	100

#define DWC2_HS_SCHEDULE_UFRAMES	8
#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
					 DWC2_HS_PERIODIC_US_PER_UFRAME)

/*
 * Constants related to low speed scheduling
 *
 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 * transfers.
 *
 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 * we only schedule 1 frame it means that we'll need to reserve a time every
 * frame even for things that only transfer very rarely, so something that runs
 * every 2048 frames will get time reserved in every frame.  Our low speed
 * schedule can be longer and we'll be able to handle more overlap, but that
 * will come at increased memory cost and increased time to schedule.
 *
 * Note: one other advantage of a short low speed schedule is that if we mess
 * up and miss scheduling we can jump in and use any of the slots that we
 * happened to reserve.
 *
 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 * the schedule.  There will be one schedule per TT.
 *
 * Requirements:
 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 */
#define DWC2_US_PER_SLICE	25
#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)

#define DWC2_ROUND_US_TO_SLICE(us) \
				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_PERIODIC_US_PER_FRAME \
				900
#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
				(DWC2_LS_PERIODIC_US_PER_FRAME / \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_SCHEDULE_FRAMES	1
#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)

/**
 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 * and periodic schedules
 *
 * These are common for both host and peripheral modes:
 *
 * @dev:                The struct device pointer
 * @regs:		Pointer to controller regs
 * @hw_params:          Parameters that were autodetected from the
 *                      hardware registers
 * @core_params:	Parameters that define how the core should be configured
 * @op_state:           The operational State, during transitions (a_host=>
 *                      a_peripheral and b_device=>b_host) this may not match
 *                      the core, but allows the software to determine
 *                      transitions
 * @dr_mode:            Requested mode of operation, one of following:
 *                      - USB_DR_MODE_PERIPHERAL
 *                      - USB_DR_MODE_HOST
 *                      - USB_DR_MODE_OTG
 * @hcd_enabled		Host mode sub-driver initialization indicator.
 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 * @ll_hw_enabled	Status of low-level hardware resources.
 * @phy:                The otg phy transceiver structure for phy control.
 * @uphy:               The otg phy transceiver structure for old USB phy
 *                      control.
 * @plat:               The platform specific configuration data. This can be
 *                      removed once all SoCs support usb transceiver.
 * @supplies:           Definition of USB power supplies
 * @phyif:              PHY interface width
 * @lock:		Spinlock that protects all the driver data structures
 * @priv:		Stores a pointer to the struct usb_hcd
 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 *                      transfer are in process of being queued
 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 *                      with an I2C interface
 * @wq_otg:             Workqueue object used for handling of some interrupts
 * @wf_otg:             Work object for handling Connector ID Status Change
 *                      interrupt
 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 * @lx_state:           Lx state of connected device
 * @gregs_backup: Backup of global registers during suspend
 * @dregs_backup: Backup of device registers during suspend
 * @hregs_backup: Backup of host registers during suspend
 *
 * These are for host mode:
 *
 * @flags:              Flags for handling root port state changes
 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are not currently
 *                      assigned to a host channel.
 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are currently
 *                      assigned to a host channel.
 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 *                      non-periodic schedule
 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 *                      list of QHs for periodic transfers that are _not_
 *                      scheduled for the next frame. Each QH in the list has an
 *                      interval counter that determines when it needs to be
 *                      scheduled for execution. This scheduling mechanism
 *                      allows only a simple calculation for periodic bandwidth
 *                      used (i.e. must assume that all periodic transfers may
 *                      need to execute in the same frame). However, it greatly
 *                      simplifies scheduling and should be sufficient for the
 *                      vast majority of OTG hosts, which need to connect to a
 *                      small number of peripherals at one time. Items move from
 *                      this list to periodic_sched_ready when the QH interval
 *                      counter is 0 at SOF.
 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 *                      the next frame, but have not yet been assigned to host
 *                      channels. Items move from this list to
 *                      periodic_sched_assigned as host channels become
 *                      available during the current frame.
 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 *                      frame that are assigned to host channels. Items move
 *                      from this list to periodic_sched_queued as the
 *                      transactions for the QH are queued to the DWC_otg
 *                      controller.
 * @periodic_sched_queued: List of periodic QHs that have been queued for
 *                      execution. Items move from this list to either
 *                      periodic_sched_inactive or periodic_sched_ready when the
 *                      channel associated with the transfer is released. If the
 *                      interval for the QH is 1, the item moves to
 *                      periodic_sched_ready because it must be rescheduled for
 *                      the next frame. Otherwise, the item moves to
 *                      periodic_sched_inactive.
 * @split_order:        List keeping track of channels doing splits, in order.
 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 *                      This value is in microseconds per (micro)frame. The
 *                      assumption is that all periodic transfers may occur in
 *                      the same (micro)frame.
 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 *                      host is in high speed mode; low speed schedules are
 *                      stored elsewhere since we need one per TT.
 * @frame_number:       Frame number read from the core at SOF. The value ranges
 *                      from 0 to HFNUM_MAX_FRNUM.
 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 *                      SOF enable/disable.
 * @free_hc_list:       Free host channels in the controller. This is a list of
 *                      struct dwc2_host_chan items.
 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 *                      Currently assuming that there is a dedicated host
 *                      channel for each periodic transaction and at least one
 *                      host channel is available for non-periodic transactions.
 * @non_periodic_channels: Number of host channels assigned to non-periodic
 *                      transfers
 * @available_host_channels Number of host channels available for the microframe
 *                      scheduler to use
 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 *                      Allows accessing a host channel descriptor given the
 *                      host channel number. This is useful in interrupt
 *                      handlers.
 * @status_buf:         Buffer used for data received during the status phase of
 *                      a control transfer.
 * @status_buf_dma:     DMA address for status_buf
 * @start_work:         Delayed work for handling host A-cable connection
 * @reset_work:         Delayed work for handling a port reset
 * @otg_port:           OTG port number
 * @frame_list:         Frame list
 * @frame_list_dma:     Frame list DMA address
 * @frame_list_sz:      Frame list size
 * @desc_gen_cache:     Kmem cache for generic descriptors
 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 *
 * These are for peripheral mode:
 *
 * @driver:             USB gadget driver
 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 * @num_of_eps:         Number of available EPs (excluding EP0)
 * @debug_root:         Root directrory for debugfs.
 * @debug_file:         Main status file for debugfs.
 * @debug_testmode:     Testmode status file for debugfs.
 * @debug_fifo:         FIFO status file for debugfs.
 * @ep0_reply:          Request used for ep0 reply.
 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 * @ctrl_buff:          Buffer for EP0 control requests.
 * @ctrl_req:           Request for EP0 control packets.
 * @ep0_state:          EP0 control transfers state
 * @test_mode:          USB test mode requested by the host
 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 * @setup_desc:		EP0 setup stage desc chain pointer
 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
 * @eps:                The endpoints being supplied to the gadget framework
 */
struct dwc2_hsotg {
	struct device *dev;
	void __iomem *regs;
	/** Params detected from hardware */
	struct dwc2_hw_params hw_params;
	/** Params to actually use */
	struct dwc2_core_params params;
	enum usb_otg_state op_state;
	enum usb_dr_mode dr_mode;
	unsigned int hcd_enabled:1;
	unsigned int gadget_enabled:1;
	unsigned int ll_hw_enabled:1;

	struct phy *phy;
	struct usb_phy *uphy;
	struct dwc2_hsotg_plat *plat;
	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
	u32 phyif;

	spinlock_t lock;
	void *priv;
	int     irq;
	struct clk *clk;
	struct reset_control *reset;

	unsigned int queuing_high_bandwidth:1;
	unsigned int srp_success:1;

	struct workqueue_struct *wq_otg;
	struct work_struct wf_otg;
	struct timer_list wkp_timer;
	enum dwc2_lx_state lx_state;
	struct dwc2_gregs_backup gr_backup;
	struct dwc2_dregs_backup dr_backup;
	struct dwc2_hregs_backup hr_backup;

	struct dentry *debug_root;
	struct debugfs_regset32 *regset;

	/* DWC OTG HW Release versions */
#define DWC2_CORE_REV_2_71a	0x4f54271a
#define DWC2_CORE_REV_2_90a	0x4f54290a
#define DWC2_CORE_REV_2_91a	0x4f54291a
#define DWC2_CORE_REV_2_92a	0x4f54292a
#define DWC2_CORE_REV_2_94a	0x4f54294a
#define DWC2_CORE_REV_3_00a	0x4f54300a
#define DWC2_CORE_REV_3_10a	0x4f54310a
#define DWC2_FS_IOT_REV_1_00a	0x5531100a
#define DWC2_HS_IOT_REV_1_00a	0x5532100a

#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
	union dwc2_hcd_internal_flags {
		u32 d32;
		struct {
			unsigned port_connect_status_change:1;
			unsigned port_connect_status:1;
			unsigned port_reset_change:1;
			unsigned port_enable_change:1;
			unsigned port_suspend_change:1;
			unsigned port_over_current_change:1;
			unsigned port_l1_change:1;
			unsigned reserved:25;
		} b;
	} flags;

	struct list_head non_periodic_sched_inactive;
	struct list_head non_periodic_sched_active;
	struct list_head *non_periodic_qh_ptr;
	struct list_head periodic_sched_inactive;
	struct list_head periodic_sched_ready;
	struct list_head periodic_sched_assigned;
	struct list_head periodic_sched_queued;
	struct list_head split_order;
	u16 periodic_usecs;
	unsigned long hs_periodic_bitmap[
		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
	u16 frame_number;
	u16 periodic_qh_count;
	bool bus_suspended;
	bool new_connection;

	u16 last_frame_num;

#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
#define FRAME_NUM_ARRAY_SIZE 1000
	u16 *frame_num_array;
	u16 *last_frame_num_array;
	int frame_num_idx;
	int dumped_frame_num_array;
#endif

	struct list_head free_hc_list;
	int periodic_channels;
	int non_periodic_channels;
	int available_host_channels;
	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
	u8 *status_buf;
	dma_addr_t status_buf_dma;
#define DWC2_HCD_STATUS_BUF_SIZE 64

	struct delayed_work start_work;
	struct delayed_work reset_work;
	u8 otg_port;
	u32 *frame_list;
	dma_addr_t frame_list_dma;
	u32 frame_list_sz;
	struct kmem_cache *desc_gen_cache;
	struct kmem_cache *desc_hsisoc_cache;

#ifdef DEBUG
	u32 frrem_samples;
	u64 frrem_accum;

	u32 hfnum_7_samples_a;
	u64 hfnum_7_frrem_accum_a;
	u32 hfnum_0_samples_a;
	u64 hfnum_0_frrem_accum_a;
	u32 hfnum_other_samples_a;
	u64 hfnum_other_frrem_accum_a;

	u32 hfnum_7_samples_b;
	u64 hfnum_7_frrem_accum_b;
	u32 hfnum_0_samples_b;
	u64 hfnum_0_frrem_accum_b;
	u32 hfnum_other_samples_b;
	u64 hfnum_other_frrem_accum_b;
#endif
#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
	/* Gadget structures */
	struct usb_gadget_driver *driver;
	int fifo_mem;
	unsigned int dedicated_fifos:1;
	unsigned char num_of_eps;
	u32 fifo_map;

	struct usb_request *ep0_reply;
	struct usb_request *ctrl_req;
	void *ep0_buff;
	void *ctrl_buff;
	enum dwc2_ep0_state ep0_state;
	u8 test_mode;

	dma_addr_t setup_desc_dma[2];
	struct dwc2_dma_desc *setup_desc[2];
	dma_addr_t ctrl_in_desc_dma;
	struct dwc2_dma_desc *ctrl_in_desc;
	dma_addr_t ctrl_out_desc_dma;
	struct dwc2_dma_desc *ctrl_out_desc;

	struct usb_gadget gadget;
	unsigned int enabled:1;
	unsigned int connected:1;
	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
};

/* Reasons for halting a host channel */
enum dwc2_halt_status {
	DWC2_HC_XFER_NO_HALT_STATUS,
	DWC2_HC_XFER_COMPLETE,
	DWC2_HC_XFER_URB_COMPLETE,
	DWC2_HC_XFER_ACK,
	DWC2_HC_XFER_NAK,
	DWC2_HC_XFER_NYET,
	DWC2_HC_XFER_STALL,
	DWC2_HC_XFER_XACT_ERR,
	DWC2_HC_XFER_FRAME_OVERRUN,
	DWC2_HC_XFER_BABBLE_ERR,
	DWC2_HC_XFER_DATA_TOGGLE_ERR,
	DWC2_HC_XFER_AHB_ERR,
	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
	DWC2_HC_XFER_URB_DEQUEUE,
};

/* Core version information */
static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
}

static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
}

static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
}

/*
 * The following functions support initialization of the core driver component
 * and the DWC_otg controller
 */
int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);

bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);

bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);

/*
 * Common core Functions.
 * The following functions support managing the DWC_otg controller in either
 * device or host mode.
 */
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);

void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);

/* This function should be called on every hardware interrupt. */
irqreturn_t dwc2_handle_common_intr(int irq, void *dev);

/* The device ID match table */
extern const struct of_device_id dwc2_of_match_table[];

int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);

/* Parameters */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
int dwc2_init_params(struct dwc2_hsotg *hsotg);

/*
 * The following functions check the controller's OTG operation mode
 * capability (GHWCFG2.OTG_MODE).
 *
 * These functions can be used before the internal hsotg->hw_params
 * are read in and cached so they always read directly from the
 * GHWCFG2 register.
 */
unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);

/*
 * Returns the mode of operation, host or device
 */
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
}

static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
}

/*
 * Dump core registers and SPRAM
 */
void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);

/* Gadget defines */
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
				       bool reset);
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
#define dwc2_is_device_connected(hsotg) (hsotg->connected)
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
#else
static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
{ return 0; }
static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
						     bool reset) {}
static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
					   int testmode)
{ return 0; }
#define dwc2_is_device_connected(hsotg) (0)
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
#else
static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
						   int us)
{ return 0; }
static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

#endif

#endif /* __DWC2_CORE_H__ */