Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*******************************************************************************

  Intel PRO/10GbE Linux driver
  Copyright(c) 1999 - 2008 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "ixgb_hw.h"
#include "ixgb_ee.h"
/* Local prototypes */
static u16 ixgb_shift_in_bits(struct ixgb_hw *hw);

static void ixgb_shift_out_bits(struct ixgb_hw *hw,
				u16 data,
				u16 count);
static void ixgb_standby_eeprom(struct ixgb_hw *hw);

static bool ixgb_wait_eeprom_command(struct ixgb_hw *hw);

static void ixgb_cleanup_eeprom(struct ixgb_hw *hw);

/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd_reg - EECD's current value
 *****************************************************************************/
static void
ixgb_raise_clock(struct ixgb_hw *hw,
		  u32 *eecd_reg)
{
	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
	 *  wait 50 microseconds.
	 */
	*eecd_reg = *eecd_reg | IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, *eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd_reg - EECD's current value
 *****************************************************************************/
static void
ixgb_lower_clock(struct ixgb_hw *hw,
		  u32 *eecd_reg)
{
	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
	 * wait 50 microseconds.
	 */
	*eecd_reg = *eecd_reg & ~IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, *eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
ixgb_shift_out_bits(struct ixgb_hw *hw,
					 u16 data,
					 u16 count)
{
	u32 eecd_reg;
	u32 mask;

	/* We need to shift "count" bits out to the EEPROM. So, value in the
	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
	 * In order to do this, "data" must be broken down into bits.
	 */
	mask = 0x01 << (count - 1);
	eecd_reg = IXGB_READ_REG(hw, EECD);
	eecd_reg &= ~(IXGB_EECD_DO | IXGB_EECD_DI);
	do {
		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
		 * and then raising and then lowering the clock (the SK bit controls
		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
		 * by setting "DI" to "0" and then raising and then lowering the clock.
		 */
		eecd_reg &= ~IXGB_EECD_DI;

		if (data & mask)
			eecd_reg |= IXGB_EECD_DI;

		IXGB_WRITE_REG(hw, EECD, eecd_reg);
		IXGB_WRITE_FLUSH(hw);

		udelay(50);

		ixgb_raise_clock(hw, &eecd_reg);
		ixgb_lower_clock(hw, &eecd_reg);

		mask = mask >> 1;

	} while (mask);

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eecd_reg &= ~IXGB_EECD_DI;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static u16
ixgb_shift_in_bits(struct ixgb_hw *hw)
{
	u32 eecd_reg;
	u32 i;
	u16 data;

	/* In order to read a register from the EEPROM, we need to shift 16 bits
	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
	 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
	 * bit.  During this "shifting in" process the "DI" bit should always be
	 * clear..
	 */

	eecd_reg = IXGB_READ_REG(hw, EECD);

	eecd_reg &= ~(IXGB_EECD_DO | IXGB_EECD_DI);
	data = 0;

	for (i = 0; i < 16; i++) {
		data = data << 1;
		ixgb_raise_clock(hw, &eecd_reg);

		eecd_reg = IXGB_READ_REG(hw, EECD);

		eecd_reg &= ~(IXGB_EECD_DI);
		if (eecd_reg & IXGB_EECD_DO)
			data |= 1;

		ixgb_lower_clock(hw, &eecd_reg);
	}

	return data;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
static void
ixgb_setup_eeprom(struct ixgb_hw *hw)
{
	u32 eecd_reg;

	eecd_reg = IXGB_READ_REG(hw, EECD);

	/*  Clear SK and DI  */
	eecd_reg &= ~(IXGB_EECD_SK | IXGB_EECD_DI);
	IXGB_WRITE_REG(hw, EECD, eecd_reg);

	/*  Set CS  */
	eecd_reg |= IXGB_EECD_CS;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_standby_eeprom(struct ixgb_hw *hw)
{
	u32 eecd_reg;

	eecd_reg = IXGB_READ_REG(hw, EECD);

	/*  Deselect EEPROM  */
	eecd_reg &= ~(IXGB_EECD_CS | IXGB_EECD_SK);
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);

	/*  Clock high  */
	eecd_reg |= IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);

	/*  Select EEPROM  */
	eecd_reg |= IXGB_EECD_CS;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);

	/*  Clock low  */
	eecd_reg &= ~IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Raises then lowers the EEPROM's clock pin
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_clock_eeprom(struct ixgb_hw *hw)
{
	u32 eecd_reg;

	eecd_reg = IXGB_READ_REG(hw, EECD);

	/*  Rising edge of clock  */
	eecd_reg |= IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);

	/*  Falling edge of clock  */
	eecd_reg &= ~IXGB_EECD_SK;
	IXGB_WRITE_REG(hw, EECD, eecd_reg);
	IXGB_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Terminates a command by lowering the EEPROM's chip select pin
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_cleanup_eeprom(struct ixgb_hw *hw)
{
	u32 eecd_reg;

	eecd_reg = IXGB_READ_REG(hw, EECD);

	eecd_reg &= ~(IXGB_EECD_CS | IXGB_EECD_DI);

	IXGB_WRITE_REG(hw, EECD, eecd_reg);

	ixgb_clock_eeprom(hw);
}

/******************************************************************************
 * Waits for the EEPROM to finish the current command.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * The command is done when the EEPROM's data out pin goes high.
 *
 * Returns:
 *      true: EEPROM data pin is high before timeout.
 *      false:  Time expired.
 *****************************************************************************/
static bool
ixgb_wait_eeprom_command(struct ixgb_hw *hw)
{
	u32 eecd_reg;
	u32 i;

	/* Toggle the CS line.  This in effect tells to EEPROM to actually execute
	 * the command in question.
	 */
	ixgb_standby_eeprom(hw);

	/* Now read DO repeatedly until is high (equal to '1').  The EEPROM will
	 * signal that the command has been completed by raising the DO signal.
	 * If DO does not go high in 10 milliseconds, then error out.
	 */
	for (i = 0; i < 200; i++) {
		eecd_reg = IXGB_READ_REG(hw, EECD);

		if (eecd_reg & IXGB_EECD_DO)
			return true;

		udelay(50);
	}
	ASSERT(0);
	return false;
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *
 * Returns:
 *  true: Checksum is valid
 *  false: Checksum is not valid.
 *****************************************************************************/
bool
ixgb_validate_eeprom_checksum(struct ixgb_hw *hw)
{
	u16 checksum = 0;
	u16 i;

	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++)
		checksum += ixgb_read_eeprom(hw, i);

	if (checksum == (u16) EEPROM_SUM)
		return true;
	else
		return false;
}

/******************************************************************************
 * Calculates the EEPROM checksum and writes it to the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
 * Writes the difference to word offset 63 of the EEPROM.
 *****************************************************************************/
void
ixgb_update_eeprom_checksum(struct ixgb_hw *hw)
{
	u16 checksum = 0;
	u16 i;

	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
		checksum += ixgb_read_eeprom(hw, i);

	checksum = (u16) EEPROM_SUM - checksum;

	ixgb_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum);
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * reg - offset within the EEPROM to be written to
 * data - 16 bit word to be written to the EEPROM
 *
 * If ixgb_update_eeprom_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 *
 *****************************************************************************/
void
ixgb_write_eeprom(struct ixgb_hw *hw, u16 offset, u16 data)
{
	struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom;

	/* Prepare the EEPROM for writing */
	ixgb_setup_eeprom(hw);

	/*  Send the 9-bit EWEN (write enable) command to the EEPROM (5-bit opcode
	 *  plus 4-bit dummy).  This puts the EEPROM into write/erase mode.
	 */
	ixgb_shift_out_bits(hw, EEPROM_EWEN_OPCODE, 5);
	ixgb_shift_out_bits(hw, 0, 4);

	/*  Prepare the EEPROM  */
	ixgb_standby_eeprom(hw);

	/*  Send the Write command (3-bit opcode + 6-bit addr)  */
	ixgb_shift_out_bits(hw, EEPROM_WRITE_OPCODE, 3);
	ixgb_shift_out_bits(hw, offset, 6);

	/*  Send the data  */
	ixgb_shift_out_bits(hw, data, 16);

	ixgb_wait_eeprom_command(hw);

	/*  Recover from write  */
	ixgb_standby_eeprom(hw);

	/* Send the 9-bit EWDS (write disable) command to the EEPROM (5-bit
	 * opcode plus 4-bit dummy).  This takes the EEPROM out of write/erase
	 * mode.
	 */
	ixgb_shift_out_bits(hw, EEPROM_EWDS_OPCODE, 5);
	ixgb_shift_out_bits(hw, 0, 4);

	/*  Done with writing  */
	ixgb_cleanup_eeprom(hw);

	/* clear the init_ctrl_reg_1 to signify that the cache is invalidated */
	ee_map->init_ctrl_reg_1 = cpu_to_le16(EEPROM_ICW1_SIGNATURE_CLEAR);
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of 16 bit word in the EEPROM to read
 *
 * Returns:
 *  The 16-bit value read from the eeprom
 *****************************************************************************/
u16
ixgb_read_eeprom(struct ixgb_hw *hw,
		  u16 offset)
{
	u16 data;

	/*  Prepare the EEPROM for reading  */
	ixgb_setup_eeprom(hw);

	/*  Send the READ command (opcode + addr)  */
	ixgb_shift_out_bits(hw, EEPROM_READ_OPCODE, 3);
	/*
	 * We have a 64 word EEPROM, there are 6 address bits
	 */
	ixgb_shift_out_bits(hw, offset, 6);

	/*  Read the data  */
	data = ixgb_shift_in_bits(hw);

	/*  End this read operation  */
	ixgb_standby_eeprom(hw);

	return data;
}

/******************************************************************************
 * Reads eeprom and stores data in shared structure.
 * Validates eeprom checksum and eeprom signature.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Returns:
 *      true: if eeprom read is successful
 *      false: otherwise.
 *****************************************************************************/
bool
ixgb_get_eeprom_data(struct ixgb_hw *hw)
{
	u16 i;
	u16 checksum = 0;
	struct ixgb_ee_map_type *ee_map;

	ENTER();

	ee_map = (struct ixgb_ee_map_type *)hw->eeprom;

	pr_debug("Reading eeprom data\n");
	for (i = 0; i < IXGB_EEPROM_SIZE ; i++) {
		u16 ee_data;
		ee_data = ixgb_read_eeprom(hw, i);
		checksum += ee_data;
		hw->eeprom[i] = cpu_to_le16(ee_data);
	}

	if (checksum != (u16) EEPROM_SUM) {
		pr_debug("Checksum invalid\n");
		/* clear the init_ctrl_reg_1 to signify that the cache is
		 * invalidated */
		ee_map->init_ctrl_reg_1 = cpu_to_le16(EEPROM_ICW1_SIGNATURE_CLEAR);
		return false;
	}

	if ((ee_map->init_ctrl_reg_1 & cpu_to_le16(EEPROM_ICW1_SIGNATURE_MASK))
		 != cpu_to_le16(EEPROM_ICW1_SIGNATURE_VALID)) {
		pr_debug("Signature invalid\n");
		return false;
	}

	return true;
}

/******************************************************************************
 * Local function to check if the eeprom signature is good
 * If the eeprom signature is good, calls ixgb)get_eeprom_data.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Returns:
 *      true: eeprom signature was good and the eeprom read was successful
 *      false: otherwise.
 ******************************************************************************/
static bool
ixgb_check_and_get_eeprom_data (struct ixgb_hw* hw)
{
	struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom;

	if ((ee_map->init_ctrl_reg_1 & cpu_to_le16(EEPROM_ICW1_SIGNATURE_MASK))
	    == cpu_to_le16(EEPROM_ICW1_SIGNATURE_VALID)) {
		return true;
	} else {
		return ixgb_get_eeprom_data(hw);
	}
}

/******************************************************************************
 * return a word from the eeprom
 *
 * hw - Struct containing variables accessed by shared code
 * index - Offset of eeprom word
 *
 * Returns:
 *          Word at indexed offset in eeprom, if valid, 0 otherwise.
 ******************************************************************************/
__le16
ixgb_get_eeprom_word(struct ixgb_hw *hw, u16 index)
{

	if (index < IXGB_EEPROM_SIZE && ixgb_check_and_get_eeprom_data(hw))
		return hw->eeprom[index];

	return 0;
}

/******************************************************************************
 * return the mac address from EEPROM
 *
 * hw       - Struct containing variables accessed by shared code
 * mac_addr - Ethernet Address if EEPROM contents are valid, 0 otherwise
 *
 * Returns: None.
 ******************************************************************************/
void
ixgb_get_ee_mac_addr(struct ixgb_hw *hw,
			u8 *mac_addr)
{
	int i;
	struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom;

	ENTER();

	if (ixgb_check_and_get_eeprom_data(hw)) {
		for (i = 0; i < ETH_ALEN; i++) {
			mac_addr[i] = ee_map->mac_addr[i];
		}
		pr_debug("eeprom mac address = %pM\n", mac_addr);
	}
}


/******************************************************************************
 * return the Printed Board Assembly number from EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Returns:
 *          PBA number if EEPROM contents are valid, 0 otherwise
 ******************************************************************************/
u32
ixgb_get_ee_pba_number(struct ixgb_hw *hw)
{
	if (ixgb_check_and_get_eeprom_data(hw))
		return le16_to_cpu(hw->eeprom[EEPROM_PBA_1_2_REG])
			| (le16_to_cpu(hw->eeprom[EEPROM_PBA_3_4_REG])<<16);

	return 0;
}


/******************************************************************************
 * return the Device Id from EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Returns:
 *          Device Id if EEPROM contents are valid, 0 otherwise
 ******************************************************************************/
u16
ixgb_get_ee_device_id(struct ixgb_hw *hw)
{
	struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom;

	if (ixgb_check_and_get_eeprom_data(hw))
		return le16_to_cpu(ee_map->device_id);

	return 0;
}