Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/*
    comedi/drivers/dmm32at.c
    Diamond Systems mm32at code for a Comedi driver

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 2000 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/
/*
Driver: dmm32at
Description: Diamond Systems mm32at driver.
Devices:
Author: Perry J. Piplani <perry.j.piplani@nasa.gov>
Updated: Fri Jun  4 09:13:24 CDT 2004
Status: experimental

This driver is for the Diamond Systems MM-32-AT board
http://www.diamondsystems.com/products/diamondmm32at It is being used
on serveral projects inside NASA, without problems so far. For analog
input commands, TRIG_EXT is not yet supported at all..

Configuration Options:
  comedi_config /dev/comedi0 dmm32at baseaddr,irq
*/

#include <linux/interrupt.h>
#include "../comedidev.h"
#include <linux/ioport.h>

#include "comedi_fc.h"

/* Board register addresses */

#define DMM32AT_MEMSIZE 0x10

#define DMM32AT_CONV 0x00
#define DMM32AT_AILSB 0x00
#define DMM32AT_AUXDOUT 0x01
#define DMM32AT_AIMSB 0x01
#define DMM32AT_AILOW 0x02
#define DMM32AT_AIHIGH 0x03

#define DMM32AT_DACLSB 0x04
#define DMM32AT_DACSTAT 0x04
#define DMM32AT_DACMSB 0x05

#define DMM32AT_FIFOCNTRL 0x07
#define DMM32AT_FIFOSTAT 0x07

#define DMM32AT_CNTRL 0x08
#define DMM32AT_AISTAT 0x08

#define DMM32AT_INTCLOCK 0x09

#define DMM32AT_CNTRDIO 0x0a

#define DMM32AT_AICONF 0x0b
#define DMM32AT_AIRBACK 0x0b

#define DMM32AT_CLK1 0x0d
#define DMM32AT_CLK2 0x0e
#define DMM32AT_CLKCT 0x0f

#define DMM32AT_DIOA 0x0c
#define DMM32AT_DIOB 0x0d
#define DMM32AT_DIOC 0x0e
#define DMM32AT_DIOCONF 0x0f

/* Board register values. */

/* DMM32AT_DACSTAT 0x04 */
#define DMM32AT_DACBUSY 0x80

/* DMM32AT_FIFOCNTRL 0x07 */
#define DMM32AT_FIFORESET 0x02
#define DMM32AT_SCANENABLE 0x04

/* DMM32AT_CNTRL 0x08 */
#define DMM32AT_RESET 0x20
#define DMM32AT_INTRESET 0x08
#define DMM32AT_CLKACC 0x00
#define DMM32AT_DIOACC 0x01

/* DMM32AT_AISTAT 0x08 */
#define DMM32AT_STATUS 0x80

/* DMM32AT_INTCLOCK 0x09 */
#define DMM32AT_ADINT 0x80
#define DMM32AT_CLKSEL 0x03

/* DMM32AT_CNTRDIO 0x0a */
#define DMM32AT_FREQ12 0x80

/* DMM32AT_AICONF 0x0b */
#define DMM32AT_RANGE_U10 0x0c
#define DMM32AT_RANGE_U5 0x0d
#define DMM32AT_RANGE_B10 0x08
#define DMM32AT_RANGE_B5 0x00
#define DMM32AT_SCINT_20 0x00
#define DMM32AT_SCINT_15 0x10
#define DMM32AT_SCINT_10 0x20
#define DMM32AT_SCINT_5 0x30

/* DMM32AT_CLKCT 0x0f */
#define DMM32AT_CLKCT1 0x56	/* mode3 counter 1 - write low byte only */
#define DMM32AT_CLKCT2 0xb6	/*  mode3 counter 2 - write high and low byte */

/* DMM32AT_DIOCONF 0x0f */
#define DMM32AT_DIENABLE 0x80
#define DMM32AT_DIRA 0x10
#define DMM32AT_DIRB 0x02
#define DMM32AT_DIRCL 0x01
#define DMM32AT_DIRCH 0x08

/* board AI ranges in comedi structure */
static const struct comedi_lrange dmm32at_airanges = {
	4,
	{
	 UNI_RANGE(10),
	 UNI_RANGE(5),
	 BIP_RANGE(10),
	 BIP_RANGE(5),
	 }
};

/* register values for above ranges */
static const unsigned char dmm32at_rangebits[] = {
	DMM32AT_RANGE_U10,
	DMM32AT_RANGE_U5,
	DMM32AT_RANGE_B10,
	DMM32AT_RANGE_B5,
};

/* only one of these ranges is valid, as set by a jumper on the
 * board. The application should only use the range set by the jumper
 */
static const struct comedi_lrange dmm32at_aoranges = {
	4,
	{
	 UNI_RANGE(10),
	 UNI_RANGE(5),
	 BIP_RANGE(10),
	 BIP_RANGE(5),
	 }
};

struct dmm32at_private {

	int data;
	int ai_inuse;
	unsigned int ai_scans_left;

	/* Used for AO readback */
	unsigned int ao_readback[4];
	unsigned char dio_config;

};

static int dmm32at_ai_rinsn(struct comedi_device *dev,
			    struct comedi_subdevice *s,
			    struct comedi_insn *insn, unsigned int *data)
{
	int n, i;
	unsigned int d;
	unsigned char status;
	unsigned short msb, lsb;
	unsigned char chan;
	int range;

	/* get the channel and range number */

	chan = CR_CHAN(insn->chanspec) & (s->n_chan - 1);
	range = CR_RANGE(insn->chanspec);

	/* printk("channel=0x%02x, range=%d\n",chan,range); */

	/* zero scan and fifo control and reset fifo */
	outb(DMM32AT_FIFORESET, dev->iobase + DMM32AT_FIFOCNTRL);

	/* write the ai channel range regs */
	outb(chan, dev->iobase + DMM32AT_AILOW);
	outb(chan, dev->iobase + DMM32AT_AIHIGH);
	/* set the range bits */
	outb(dmm32at_rangebits[range], dev->iobase + DMM32AT_AICONF);

	/* wait for circuit to settle */
	for (i = 0; i < 40000; i++) {
		status = inb(dev->iobase + DMM32AT_AIRBACK);
		if ((status & DMM32AT_STATUS) == 0)
			break;
	}
	if (i == 40000) {
		printk(KERN_WARNING "dmm32at: timeout\n");
		return -ETIMEDOUT;
	}

	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		/* trigger conversion */
		outb(0xff, dev->iobase + DMM32AT_CONV);
		/* wait for conversion to end */
		for (i = 0; i < 40000; i++) {
			status = inb(dev->iobase + DMM32AT_AISTAT);
			if ((status & DMM32AT_STATUS) == 0)
				break;
		}
		if (i == 40000) {
			printk(KERN_WARNING "dmm32at: timeout\n");
			return -ETIMEDOUT;
		}

		/* read data */
		lsb = inb(dev->iobase + DMM32AT_AILSB);
		msb = inb(dev->iobase + DMM32AT_AIMSB);

		/* invert sign bit to make range unsigned, this is an
		   idiosyncrasy of the diamond board, it return
		   conversions as a signed value, i.e. -32768 to
		   32767, flipping the bit and interpreting it as
		   signed gives you a range of 0 to 65535 which is
		   used by comedi */
		d = ((msb ^ 0x0080) << 8) + lsb;

		data[n] = d;
	}

	/* return the number of samples read/written */
	return n;
}

static int dmm32at_ns_to_timer(unsigned int *ns, int round)
{
	/* trivial timer */
	return *ns;
}

static int dmm32at_ai_cmdtest(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_cmd *cmd)
{
	int err = 0;
	int tmp;
	int start_chan, gain, i;

	/* Step 1 : check if triggers are trivially valid */

	err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER /*| TRIG_EXT */);
	err |= cfc_check_trigger_src(&cmd->convert_src,
					TRIG_TIMER /*| TRIG_EXT */);
	err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
	err |= cfc_check_trigger_is_unique(cmd->convert_src);
	err |= cfc_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);

#define MAX_SCAN_SPEED	1000000	/* in nanoseconds */
#define MIN_SCAN_SPEED	1000000000	/* in nanoseconds */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
						 MAX_SCAN_SPEED);
		err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
						 MIN_SCAN_SPEED);
	} else {
		/* external trigger */
		/* should be level/edge, hi/lo specification here */
		/* should specify multiple external triggers */
		err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
	}

	if (cmd->convert_src == TRIG_TIMER) {
		if (cmd->convert_arg >= 17500)
			cmd->convert_arg = 20000;
		else if (cmd->convert_arg >= 12500)
			cmd->convert_arg = 15000;
		else if (cmd->convert_arg >= 7500)
			cmd->convert_arg = 10000;
		else
			cmd->convert_arg = 5000;
	} else {
		/* external trigger */
		/* see above */
		err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 9);
	}

	err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);

	if (cmd->stop_src == TRIG_COUNT) {
		err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0xfffffff0);
		err |= cfc_check_trigger_arg_min(&cmd->stop_arg, 1);
	} else {
		/* TRIG_NONE */
		err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
	}

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		tmp = cmd->scan_begin_arg;
		dmm32at_ns_to_timer(&cmd->scan_begin_arg,
				    cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->scan_begin_arg)
			err++;
	}
	if (cmd->convert_src == TRIG_TIMER) {
		tmp = cmd->convert_arg;
		dmm32at_ns_to_timer(&cmd->convert_arg,
				    cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->convert_arg)
			err++;
		if (cmd->scan_begin_src == TRIG_TIMER &&
		    cmd->scan_begin_arg <
		    cmd->convert_arg * cmd->scan_end_arg) {
			cmd->scan_begin_arg =
			    cmd->convert_arg * cmd->scan_end_arg;
			err++;
		}
	}

	if (err)
		return 4;

	/* step 5 check the channel list, the channel list for this
	   board must be consecutive and gains must be the same */

	if (cmd->chanlist) {
		gain = CR_RANGE(cmd->chanlist[0]);
		start_chan = CR_CHAN(cmd->chanlist[0]);
		for (i = 1; i < cmd->chanlist_len; i++) {
			if (CR_CHAN(cmd->chanlist[i]) !=
			    (start_chan + i) % s->n_chan) {
				comedi_error(dev,
					     "entries in chanlist must be consecutive channels, counting upwards\n");
				err++;
			}
			if (CR_RANGE(cmd->chanlist[i]) != gain) {
				comedi_error(dev,
					     "entries in chanlist must all have the same gain\n");
				err++;
			}
		}
	}

	if (err)
		return 5;

	return 0;
}

static void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec)
{
	unsigned char lo1, lo2, hi2;
	unsigned short both2;

	/* based on 10mhz clock */
	lo1 = 200;
	both2 = nansec / 20000;
	hi2 = (both2 & 0xff00) >> 8;
	lo2 = both2 & 0x00ff;

	/* set the counter frequency to 10mhz */
	outb(0, dev->iobase + DMM32AT_CNTRDIO);

	/* get access to the clock regs */
	outb(DMM32AT_CLKACC, dev->iobase + DMM32AT_CNTRL);

	/* write the counter 1 control word and low byte to counter */
	outb(DMM32AT_CLKCT1, dev->iobase + DMM32AT_CLKCT);
	outb(lo1, dev->iobase + DMM32AT_CLK1);

	/* write the counter 2 control word and low byte then to counter */
	outb(DMM32AT_CLKCT2, dev->iobase + DMM32AT_CLKCT);
	outb(lo2, dev->iobase + DMM32AT_CLK2);
	outb(hi2, dev->iobase + DMM32AT_CLK2);

	/* enable the ai conversion interrupt and the clock to start scans */
	outb(DMM32AT_ADINT | DMM32AT_CLKSEL, dev->iobase + DMM32AT_INTCLOCK);
}

static int dmm32at_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct dmm32at_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	int i, range;
	unsigned char chanlo, chanhi, status;

	if (!cmd->chanlist)
		return -EINVAL;

	/* get the channel list and range */
	chanlo = CR_CHAN(cmd->chanlist[0]) & (s->n_chan - 1);
	chanhi = chanlo + cmd->chanlist_len - 1;
	if (chanhi >= s->n_chan)
		return -EINVAL;
	range = CR_RANGE(cmd->chanlist[0]);

	/* reset fifo */
	outb(DMM32AT_FIFORESET, dev->iobase + DMM32AT_FIFOCNTRL);

	/* set scan enable */
	outb(DMM32AT_SCANENABLE, dev->iobase + DMM32AT_FIFOCNTRL);

	/* write the ai channel range regs */
	outb(chanlo, dev->iobase + DMM32AT_AILOW);
	outb(chanhi, dev->iobase + DMM32AT_AIHIGH);

	/* set the range bits */
	outb(dmm32at_rangebits[range], dev->iobase + DMM32AT_AICONF);

	/* reset the interrupt just in case */
	outb(DMM32AT_INTRESET, dev->iobase + DMM32AT_CNTRL);

	if (cmd->stop_src == TRIG_COUNT)
		devpriv->ai_scans_left = cmd->stop_arg;
	else {			/* TRIG_NONE */
		devpriv->ai_scans_left = 0xffffffff; /* indicates TRIG_NONE to
						      * isr */
	}

	/* wait for circuit to settle */
	for (i = 0; i < 40000; i++) {
		status = inb(dev->iobase + DMM32AT_AIRBACK);
		if ((status & DMM32AT_STATUS) == 0)
			break;
	}
	if (i == 40000) {
		printk(KERN_WARNING "dmm32at: timeout\n");
		return -ETIMEDOUT;
	}

	if (devpriv->ai_scans_left > 1) {
		/* start the clock and enable the interrupts */
		dmm32at_setaitimer(dev, cmd->scan_begin_arg);
	} else {
		/* start the interrups and initiate a single scan */
		outb(DMM32AT_ADINT, dev->iobase + DMM32AT_INTCLOCK);
		outb(0xff, dev->iobase + DMM32AT_CONV);
	}

/*	printk("dmmat32 in command\n"); */

/*	for(i=0;i<cmd->chanlist_len;i++) */
/*		comedi_buf_put(s->async,i*100); */

/*	s->async->events |= COMEDI_CB_EOA; */
/*	comedi_event(dev, s); */

	return 0;

}

static int dmm32at_ai_cancel(struct comedi_device *dev,
			     struct comedi_subdevice *s)
{
	struct dmm32at_private *devpriv = dev->private;

	devpriv->ai_scans_left = 1;
	return 0;
}

static irqreturn_t dmm32at_isr(int irq, void *d)
{
	struct comedi_device *dev = d;
	struct dmm32at_private *devpriv = dev->private;
	unsigned char intstat;
	unsigned int samp;
	unsigned short msb, lsb;
	int i;

	if (!dev->attached) {
		comedi_error(dev, "spurious interrupt");
		return IRQ_HANDLED;
	}

	intstat = inb(dev->iobase + DMM32AT_INTCLOCK);

	if (intstat & DMM32AT_ADINT) {
		struct comedi_subdevice *s = dev->read_subdev;
		struct comedi_cmd *cmd = &s->async->cmd;

		for (i = 0; i < cmd->chanlist_len; i++) {
			/* read data */
			lsb = inb(dev->iobase + DMM32AT_AILSB);
			msb = inb(dev->iobase + DMM32AT_AIMSB);

			/* invert sign bit to make range unsigned */
			samp = ((msb ^ 0x0080) << 8) + lsb;
			comedi_buf_put(s->async, samp);
		}

		if (devpriv->ai_scans_left != 0xffffffff) {	/* TRIG_COUNT */
			devpriv->ai_scans_left--;
			if (devpriv->ai_scans_left == 0) {
				/* disable further interrupts and clocks */
				outb(0x0, dev->iobase + DMM32AT_INTCLOCK);
				/* set the buffer to be flushed with an EOF */
				s->async->events |= COMEDI_CB_EOA;
			}

		}
		/* flush the buffer */
		comedi_event(dev, s);
	}

	/* reset the interrupt */
	outb(DMM32AT_INTRESET, dev->iobase + DMM32AT_CNTRL);
	return IRQ_HANDLED;
}

static int dmm32at_ao_winsn(struct comedi_device *dev,
			    struct comedi_subdevice *s,
			    struct comedi_insn *insn, unsigned int *data)
{
	struct dmm32at_private *devpriv = dev->private;
	int i;
	int chan = CR_CHAN(insn->chanspec);
	unsigned char hi, lo, status;

	/* Writing a list of values to an AO channel is probably not
	 * very useful, but that's how the interface is defined. */
	for (i = 0; i < insn->n; i++) {

		devpriv->ao_readback[chan] = data[i];

		/* get the low byte */
		lo = data[i] & 0x00ff;
		/* high byte also contains channel number */
		hi = (data[i] >> 8) + chan * (1 << 6);
		/* printk("writing 0x%02x  0x%02x\n",hi,lo); */
		/* write the low and high values to the board */
		outb(lo, dev->iobase + DMM32AT_DACLSB);
		outb(hi, dev->iobase + DMM32AT_DACMSB);

		/* wait for circuit to settle */
		for (i = 0; i < 40000; i++) {
			status = inb(dev->iobase + DMM32AT_DACSTAT);
			if ((status & DMM32AT_DACBUSY) == 0)
				break;
		}
		if (i == 40000) {
			printk(KERN_WARNING "dmm32at: timeout\n");
			return -ETIMEDOUT;
		}
		/* dummy read to update trigger the output */
		status = inb(dev->iobase + DMM32AT_DACMSB);

	}

	/* return the number of samples read/written */
	return i;
}

static int dmm32at_ao_rinsn(struct comedi_device *dev,
			    struct comedi_subdevice *s,
			    struct comedi_insn *insn, unsigned int *data)
{
	struct dmm32at_private *devpriv = dev->private;
	int i;
	int chan = CR_CHAN(insn->chanspec);

	for (i = 0; i < insn->n; i++)
		data[i] = devpriv->ao_readback[chan];

	return i;
}

static int dmm32at_dio_insn_bits(struct comedi_device *dev,
				 struct comedi_subdevice *s,
				 struct comedi_insn *insn, unsigned int *data)
{
	struct dmm32at_private *devpriv = dev->private;
	unsigned char diobits;

	/* The insn data is a mask in data[0] and the new data
	 * in data[1], each channel cooresponding to a bit. */
	if (data[0]) {
		s->state &= ~data[0];
		s->state |= data[0] & data[1];
		/* Write out the new digital output lines */
		/* outw(s->state,dev->iobase + DMM32AT_DIO); */
	}

	/* get access to the DIO regs */
	outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL);

	/* if either part of dio is set for output */
	if (((devpriv->dio_config & DMM32AT_DIRCL) == 0) ||
	    ((devpriv->dio_config & DMM32AT_DIRCH) == 0)) {
		diobits = (s->state & 0x00ff0000) >> 16;
		outb(diobits, dev->iobase + DMM32AT_DIOC);
	}
	if ((devpriv->dio_config & DMM32AT_DIRB) == 0) {
		diobits = (s->state & 0x0000ff00) >> 8;
		outb(diobits, dev->iobase + DMM32AT_DIOB);
	}
	if ((devpriv->dio_config & DMM32AT_DIRA) == 0) {
		diobits = (s->state & 0x000000ff);
		outb(diobits, dev->iobase + DMM32AT_DIOA);
	}

	/* now read the state back in */
	s->state = inb(dev->iobase + DMM32AT_DIOC);
	s->state <<= 8;
	s->state |= inb(dev->iobase + DMM32AT_DIOB);
	s->state <<= 8;
	s->state |= inb(dev->iobase + DMM32AT_DIOA);
	data[1] = s->state;

	/* on return, data[1] contains the value of the digital
	 * input and output lines. */
	/* data[1]=inw(dev->iobase + DMM32AT_DIO); */
	/* or we could just return the software copy of the output values if
	 * it was a purely digital output subdevice */
	/* data[1]=s->state; */

	return insn->n;
}

static int dmm32at_dio_insn_config(struct comedi_device *dev,
				   struct comedi_subdevice *s,
				   struct comedi_insn *insn, unsigned int *data)
{
	struct dmm32at_private *devpriv = dev->private;
	unsigned char chanbit;
	int chan = CR_CHAN(insn->chanspec);

	if (insn->n != 1)
		return -EINVAL;

	if (chan < 8)
		chanbit = DMM32AT_DIRA;
	else if (chan < 16)
		chanbit = DMM32AT_DIRB;
	else if (chan < 20)
		chanbit = DMM32AT_DIRCL;
	else
		chanbit = DMM32AT_DIRCH;

	/* The input or output configuration of each digital line is
	 * configured by a special insn_config instruction.  chanspec
	 * contains the channel to be changed, and data[0] contains the
	 * value COMEDI_INPUT or COMEDI_OUTPUT. */

	/* if output clear the bit, otherwise set it */
	if (data[0] == COMEDI_OUTPUT)
		devpriv->dio_config &= ~chanbit;
	else
		devpriv->dio_config |= chanbit;
	/* get access to the DIO regs */
	outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL);
	/* set the DIO's to the new configuration setting */
	outb(devpriv->dio_config, dev->iobase + DMM32AT_DIOCONF);

	return 1;
}

static int dmm32at_attach(struct comedi_device *dev,
			  struct comedi_devconfig *it)
{
	struct dmm32at_private *devpriv;
	int ret;
	struct comedi_subdevice *s;
	unsigned char aihi, ailo, fifostat, aistat, intstat, airback;
	unsigned long iobase;
	unsigned int irq;

	dev->board_name = dev->driver->driver_name;

	iobase = it->options[0];
	irq = it->options[1];

	printk(KERN_INFO "comedi%d: dmm32at: attaching\n", dev->minor);
	printk(KERN_DEBUG "dmm32at: probing at address 0x%04lx, irq %u\n",
	       iobase, irq);

	/* register address space */
	if (!request_region(iobase, DMM32AT_MEMSIZE, dev->board_name)) {
		printk(KERN_ERR "comedi%d: dmm32at: I/O port conflict\n",
		       dev->minor);
		return -EIO;
	}
	dev->iobase = iobase;

	/* the following just makes sure the board is there and gets
	   it to a known state */

	/* reset the board */
	outb(DMM32AT_RESET, dev->iobase + DMM32AT_CNTRL);

	/* allow a millisecond to reset */
	udelay(1000);

	/* zero scan and fifo control */
	outb(0x0, dev->iobase + DMM32AT_FIFOCNTRL);

	/* zero interrupt and clock control */
	outb(0x0, dev->iobase + DMM32AT_INTCLOCK);

	/* write a test channel range, the high 3 bits should drop */
	outb(0x80, dev->iobase + DMM32AT_AILOW);
	outb(0xff, dev->iobase + DMM32AT_AIHIGH);

	/* set the range at 10v unipolar */
	outb(DMM32AT_RANGE_U10, dev->iobase + DMM32AT_AICONF);

	/* should take 10 us to settle, here's a hundred */
	udelay(100);

	/* read back the values */
	ailo = inb(dev->iobase + DMM32AT_AILOW);
	aihi = inb(dev->iobase + DMM32AT_AIHIGH);
	fifostat = inb(dev->iobase + DMM32AT_FIFOSTAT);
	aistat = inb(dev->iobase + DMM32AT_AISTAT);
	intstat = inb(dev->iobase + DMM32AT_INTCLOCK);
	airback = inb(dev->iobase + DMM32AT_AIRBACK);

	printk(KERN_DEBUG "dmm32at: lo=0x%02x hi=0x%02x fifostat=0x%02x\n",
	       ailo, aihi, fifostat);
	printk(KERN_DEBUG
	       "dmm32at: aistat=0x%02x intstat=0x%02x airback=0x%02x\n",
	       aistat, intstat, airback);

	if ((ailo != 0x00) || (aihi != 0x1f) || (fifostat != 0x80) ||
	    (aistat != 0x60 || (intstat != 0x00) || airback != 0x0c)) {
		printk(KERN_ERR "dmmat32: board detection failed\n");
		return -EIO;
	}

	/* board is there, register interrupt */
	if (irq) {
		ret = request_irq(irq, dmm32at_isr, 0, dev->board_name, dev);
		if (ret < 0) {
			printk(KERN_ERR "dmm32at: irq conflict\n");
			return ret;
		}
		dev->irq = irq;
	}

	devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL);
	if (!devpriv)
		return -ENOMEM;
	dev->private = devpriv;

	ret = comedi_alloc_subdevices(dev, 3);
	if (ret)
		return ret;

	s = &dev->subdevices[0];
	dev->read_subdev = s;
	/* analog input subdevice */
	s->type = COMEDI_SUBD_AI;
	/* we support single-ended (ground) and differential */
	s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF | SDF_CMD_READ;
	s->n_chan = 32;
	s->maxdata = 0xffff;
	s->range_table = &dmm32at_airanges;
	s->len_chanlist = 32;	/* This is the maximum chanlist length that
				   the board can handle */
	s->insn_read = dmm32at_ai_rinsn;
	s->do_cmd = dmm32at_ai_cmd;
	s->do_cmdtest = dmm32at_ai_cmdtest;
	s->cancel = dmm32at_ai_cancel;

	s = &dev->subdevices[1];
	/* analog output subdevice */
	s->type = COMEDI_SUBD_AO;
	s->subdev_flags = SDF_WRITABLE;
	s->n_chan = 4;
	s->maxdata = 0x0fff;
	s->range_table = &dmm32at_aoranges;
	s->insn_write = dmm32at_ao_winsn;
	s->insn_read = dmm32at_ao_rinsn;

	s = &dev->subdevices[2];
	/* digital i/o subdevice */

	/* get access to the DIO regs */
	outb(DMM32AT_DIOACC, dev->iobase + DMM32AT_CNTRL);
	/* set the DIO's to the defualt input setting */
	devpriv->dio_config = DMM32AT_DIRA | DMM32AT_DIRB |
		DMM32AT_DIRCL | DMM32AT_DIRCH | DMM32AT_DIENABLE;
	outb(devpriv->dio_config, dev->iobase + DMM32AT_DIOCONF);

	/* set up the subdevice */
	s->type = COMEDI_SUBD_DIO;
	s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
	s->n_chan = 24;
	s->maxdata = 1;
	s->state = 0;
	s->range_table = &range_digital;
	s->insn_bits = dmm32at_dio_insn_bits;
	s->insn_config = dmm32at_dio_insn_config;

	/* success */
	printk(KERN_INFO "comedi%d: dmm32at: attached\n", dev->minor);

	return 1;

}

static void dmm32at_detach(struct comedi_device *dev)
{
	if (dev->irq)
		free_irq(dev->irq, dev);
	if (dev->iobase)
		release_region(dev->iobase, DMM32AT_MEMSIZE);
}

static struct comedi_driver dmm32at_driver = {
	.driver_name	= "dmm32at",
	.module		= THIS_MODULE,
	.attach		= dmm32at_attach,
	.detach		= dmm32at_detach,
};
module_comedi_driver(dmm32at_driver);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");