Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/*
 * cmm.c
 *
 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
 *
 * The Communication(Shared) Memory Management(CMM) module provides
 * shared memory management services for DSP/BIOS Bridge data streaming
 * and messaging.
 *
 * Multiple shared memory segments can be registered with CMM.
 * Each registered SM segment is represented by a SM "allocator" that
 * describes a block of physically contiguous shared memory used for
 * future allocations by CMM.
 *
 * Memory is coalesced back to the appropriate heap when a buffer is
 * freed.
 *
 * Notes:
 *   Va: Virtual address.
 *   Pa: Physical or kernel system address.
 *
 * Copyright (C) 2005-2006 Texas Instruments, Inc.
 *
 * This package is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */
#include <linux/types.h>
#include <linux/list.h>

/*  ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/dbdefs.h>

/*  ----------------------------------- OS Adaptation Layer */
#include <dspbridge/sync.h>

/*  ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
#include <dspbridge/proc.h>

/*  ----------------------------------- This */
#include <dspbridge/cmm.h>

/*  ----------------------------------- Defines, Data Structures, Typedefs */
#define NEXT_PA(pnode)   (pnode->pa + pnode->size)

/* Other bus/platform translations */
#define DSPPA2GPPPA(base, x, y)  ((x)+(y))
#define GPPPA2DSPPA(base, x, y)  ((x)-(y))

/*
 *  Allocators define a block of contiguous memory used for future allocations.
 *
 *      sma - shared memory allocator.
 *      vma - virtual memory allocator.(not used).
 */
struct cmm_allocator {		/* sma */
	unsigned int shm_base;	/* Start of physical SM block */
	u32 sm_size;		/* Size of SM block in bytes */
	unsigned int vm_base;	/* Start of VM block. (Dev driver
					 * context for 'sma') */
	u32 dsp_phys_addr_offset;	/* DSP PA to GPP PA offset for this
					 * SM space */
	s8 c_factor;		/* DSPPa to GPPPa Conversion Factor */
	unsigned int dsp_base;	/* DSP virt base byte address */
	u32 dsp_size;	/* DSP seg size in bytes */
	struct cmm_object *cmm_mgr;	/* back ref to parent mgr */
	/* node list of available memory */
	struct list_head free_list;
	/* node list of memory in use */
	struct list_head in_use_list;
};

struct cmm_xlator {		/* Pa<->Va translator object */
	/* CMM object this translator associated */
	struct cmm_object *cmm_mgr;
	/*
	 *  Client process virtual base address that corresponds to phys SM
	 *  base address for translator's seg_id.
	 *  Only 1 segment ID currently supported.
	 */
	unsigned int virt_base;	/* virtual base address */
	u32 virt_size;		/* size of virt space in bytes */
	u32 seg_id;		/* Segment Id */
};

/* CMM Mgr */
struct cmm_object {
	/*
	 * Cmm Lock is used to serialize access mem manager for multi-threads.
	 */
	struct mutex cmm_lock;	/* Lock to access cmm mgr */
	struct list_head node_free_list;	/* Free list of memory nodes */
	u32 min_block_size;	/* Min SM block; default 16 bytes */
	u32 page_size;	/* Memory Page size (1k/4k) */
	/* GPP SM segment ptrs */
	struct cmm_allocator *pa_gppsm_seg_tab[CMM_MAXGPPSEGS];
};

/* Default CMM Mgr attributes */
static struct cmm_mgrattrs cmm_dfltmgrattrs = {
	/* min_block_size, min block size(bytes) allocated by cmm mgr */
	16
};

/* Default allocation attributes */
static struct cmm_attrs cmm_dfltalctattrs = {
	1		/* seg_id, default segment Id for allocator */
};

/* Address translator default attrs */
static struct cmm_xlatorattrs cmm_dfltxlatorattrs = {
	/* seg_id, does not have to match cmm_dfltalctattrs ul_seg_id */
	1,
	0,			/* dsp_bufs */
	0,			/* dsp_buf_size */
	NULL,			/* vm_base */
	0,			/* vm_size */
};

/* SM node representing a block of memory. */
struct cmm_mnode {
	struct list_head link;	/* must be 1st element */
	u32 pa;		/* Phys addr */
	u32 va;			/* Virtual address in device process context */
	u32 size;		/* SM block size in bytes */
	u32 client_proc;	/* Process that allocated this mem block */
};

/*  ----------------------------------- Function Prototypes */
static void add_to_free_list(struct cmm_allocator *allocator,
			     struct cmm_mnode *pnode);
static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
					   u32 ul_seg_id);
static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
					u32 usize);
static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
				  u32 dw_va, u32 ul_size);
/* get available slot for new allocator */
static s32 get_slot(struct cmm_object *cmm_mgr_obj);
static void un_register_gppsm_seg(struct cmm_allocator *psma);

/*
 *  ======== cmm_calloc_buf ========
 *  Purpose:
 *      Allocate a SM buffer, zero contents, and return the physical address
 *      and optional driver context virtual address(pp_buf_va).
 *
 *      The freelist is sorted in increasing size order. Get the first
 *      block that satifies the request and sort the remaining back on
 *      the freelist; if large enough. The kept block is placed on the
 *      inUseList.
 */
void *cmm_calloc_buf(struct cmm_object *hcmm_mgr, u32 usize,
		     struct cmm_attrs *pattrs, void **pp_buf_va)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	void *buf_pa = NULL;
	struct cmm_mnode *pnode = NULL;
	struct cmm_mnode *new_node = NULL;
	struct cmm_allocator *allocator = NULL;
	u32 delta_size;
	u8 *pbyte = NULL;
	s32 cnt;

	if (pattrs == NULL)
		pattrs = &cmm_dfltalctattrs;

	if (pp_buf_va != NULL)
		*pp_buf_va = NULL;

	if (cmm_mgr_obj && (usize != 0)) {
		if (pattrs->seg_id > 0) {
			/* SegId > 0 is SM */
			/* get the allocator object for this segment id */
			allocator =
			    get_allocator(cmm_mgr_obj, pattrs->seg_id);
			/* keep block size a multiple of min_block_size */
			usize =
			    ((usize - 1) & ~(cmm_mgr_obj->min_block_size -
					     1))
			    + cmm_mgr_obj->min_block_size;
			mutex_lock(&cmm_mgr_obj->cmm_lock);
			pnode = get_free_block(allocator, usize);
		}
		if (pnode) {
			delta_size = (pnode->size - usize);
			if (delta_size >= cmm_mgr_obj->min_block_size) {
				/* create a new block with the leftovers and
				 * add to freelist */
				new_node =
				    get_node(cmm_mgr_obj, pnode->pa + usize,
					     pnode->va + usize,
					     (u32) delta_size);
				/* leftovers go free */
				add_to_free_list(allocator, new_node);
				/* adjust our node's size */
				pnode->size = usize;
			}
			/* Tag node with client process requesting allocation
			 * We'll need to free up a process's alloc'd SM if the
			 * client process goes away.
			 */
			/* Return TGID instead of process handle */
			pnode->client_proc = current->tgid;

			/* put our node on InUse list */
			list_add_tail(&pnode->link, &allocator->in_use_list);
			buf_pa = (void *)pnode->pa;	/* physical address */
			/* clear mem */
			pbyte = (u8 *) pnode->va;
			for (cnt = 0; cnt < (s32) usize; cnt++, pbyte++)
				*pbyte = 0;

			if (pp_buf_va != NULL) {
				/* Virtual address */
				*pp_buf_va = (void *)pnode->va;
			}
		}
		mutex_unlock(&cmm_mgr_obj->cmm_lock);
	}
	return buf_pa;
}

/*
 *  ======== cmm_create ========
 *  Purpose:
 *      Create a communication memory manager object.
 */
int cmm_create(struct cmm_object **ph_cmm_mgr,
		      struct dev_object *hdev_obj,
		      const struct cmm_mgrattrs *mgr_attrts)
{
	struct cmm_object *cmm_obj = NULL;
	int status = 0;

	*ph_cmm_mgr = NULL;
	/* create, zero, and tag a cmm mgr object */
	cmm_obj = kzalloc(sizeof(struct cmm_object), GFP_KERNEL);
	if (!cmm_obj)
		return -ENOMEM;

	if (mgr_attrts == NULL)
		mgr_attrts = &cmm_dfltmgrattrs;	/* set defaults */

	/* save away smallest block allocation for this cmm mgr */
	cmm_obj->min_block_size = mgr_attrts->min_block_size;
	cmm_obj->page_size = PAGE_SIZE;

	/* create node free list */
	INIT_LIST_HEAD(&cmm_obj->node_free_list);
	mutex_init(&cmm_obj->cmm_lock);
	*ph_cmm_mgr = cmm_obj;

	return status;
}

/*
 *  ======== cmm_destroy ========
 *  Purpose:
 *      Release the communication memory manager resources.
 */
int cmm_destroy(struct cmm_object *hcmm_mgr, bool force)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	struct cmm_info temp_info;
	int status = 0;
	s32 slot_seg;
	struct cmm_mnode *node, *tmp;

	if (!hcmm_mgr) {
		status = -EFAULT;
		return status;
	}
	mutex_lock(&cmm_mgr_obj->cmm_lock);
	/* If not force then fail if outstanding allocations exist */
	if (!force) {
		/* Check for outstanding memory allocations */
		status = cmm_get_info(hcmm_mgr, &temp_info);
		if (!status) {
			if (temp_info.total_in_use_cnt > 0) {
				/* outstanding allocations */
				status = -EPERM;
			}
		}
	}
	if (!status) {
		/* UnRegister SM allocator */
		for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
			if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] != NULL) {
				un_register_gppsm_seg
				    (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg]);
				/* Set slot to NULL for future reuse */
				cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = NULL;
			}
		}
	}
	list_for_each_entry_safe(node, tmp, &cmm_mgr_obj->node_free_list,
			link) {
		list_del(&node->link);
		kfree(node);
	}
	mutex_unlock(&cmm_mgr_obj->cmm_lock);
	if (!status) {
		/* delete CS & cmm mgr object */
		mutex_destroy(&cmm_mgr_obj->cmm_lock);
		kfree(cmm_mgr_obj);
	}
	return status;
}

/*
 *  ======== cmm_free_buf ========
 *  Purpose:
 *      Free the given buffer.
 */
int cmm_free_buf(struct cmm_object *hcmm_mgr, void *buf_pa, u32 ul_seg_id)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	int status = -EFAULT;
	struct cmm_mnode *curr, *tmp;
	struct cmm_allocator *allocator;
	struct cmm_attrs *pattrs;

	if (ul_seg_id == 0) {
		pattrs = &cmm_dfltalctattrs;
		ul_seg_id = pattrs->seg_id;
	}
	if (!hcmm_mgr || !(ul_seg_id > 0)) {
		status = -EFAULT;
		return status;
	}

	allocator = get_allocator(cmm_mgr_obj, ul_seg_id);
	if (!allocator)
		return status;

	mutex_lock(&cmm_mgr_obj->cmm_lock);
	list_for_each_entry_safe(curr, tmp, &allocator->in_use_list, link) {
		if (curr->pa == (u32) buf_pa) {
			list_del(&curr->link);
			add_to_free_list(allocator, curr);
			status = 0;
			break;
		}
	}
	mutex_unlock(&cmm_mgr_obj->cmm_lock);

	return status;
}

/*
 *  ======== cmm_get_handle ========
 *  Purpose:
 *      Return the communication memory manager object for this device.
 *      This is typically called from the client process.
 */
int cmm_get_handle(void *hprocessor, struct cmm_object ** ph_cmm_mgr)
{
	int status = 0;
	struct dev_object *hdev_obj;

	if (hprocessor != NULL)
		status = proc_get_dev_object(hprocessor, &hdev_obj);
	else
		hdev_obj = dev_get_first();	/* default */

	if (!status)
		status = dev_get_cmm_mgr(hdev_obj, ph_cmm_mgr);

	return status;
}

/*
 *  ======== cmm_get_info ========
 *  Purpose:
 *      Return the current memory utilization information.
 */
int cmm_get_info(struct cmm_object *hcmm_mgr,
			struct cmm_info *cmm_info_obj)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	u32 ul_seg;
	int status = 0;
	struct cmm_allocator *altr;
	struct cmm_mnode *curr;

	if (!hcmm_mgr) {
		status = -EFAULT;
		return status;
	}
	mutex_lock(&cmm_mgr_obj->cmm_lock);
	cmm_info_obj->num_gppsm_segs = 0;	/* # of SM segments */
	/* Total # of outstanding alloc */
	cmm_info_obj->total_in_use_cnt = 0;
	/* min block size */
	cmm_info_obj->min_block_size = cmm_mgr_obj->min_block_size;
	/* check SM memory segments */
	for (ul_seg = 1; ul_seg <= CMM_MAXGPPSEGS; ul_seg++) {
		/* get the allocator object for this segment id */
		altr = get_allocator(cmm_mgr_obj, ul_seg);
		if (!altr)
			continue;
		cmm_info_obj->num_gppsm_segs++;
		cmm_info_obj->seg_info[ul_seg - 1].seg_base_pa =
			altr->shm_base - altr->dsp_size;
		cmm_info_obj->seg_info[ul_seg - 1].total_seg_size =
			altr->dsp_size + altr->sm_size;
		cmm_info_obj->seg_info[ul_seg - 1].gpp_base_pa =
			altr->shm_base;
		cmm_info_obj->seg_info[ul_seg - 1].gpp_size =
			altr->sm_size;
		cmm_info_obj->seg_info[ul_seg - 1].dsp_base_va =
			altr->dsp_base;
		cmm_info_obj->seg_info[ul_seg - 1].dsp_size =
			altr->dsp_size;
		cmm_info_obj->seg_info[ul_seg - 1].seg_base_va =
			altr->vm_base - altr->dsp_size;
		cmm_info_obj->seg_info[ul_seg - 1].in_use_cnt = 0;

		list_for_each_entry(curr, &altr->in_use_list, link) {
			cmm_info_obj->total_in_use_cnt++;
			cmm_info_obj->seg_info[ul_seg - 1].in_use_cnt++;
		}
	}
	mutex_unlock(&cmm_mgr_obj->cmm_lock);
	return status;
}

/*
 *  ======== cmm_register_gppsm_seg ========
 *  Purpose:
 *      Register a block of SM with the CMM to be used for later GPP SM
 *      allocations.
 */
int cmm_register_gppsm_seg(struct cmm_object *hcmm_mgr,
				  u32 dw_gpp_base_pa, u32 ul_size,
				  u32 dsp_addr_offset, s8 c_factor,
				  u32 dw_dsp_base, u32 ul_dsp_size,
				  u32 *sgmt_id, u32 gpp_base_va)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	struct cmm_allocator *psma = NULL;
	int status = 0;
	struct cmm_mnode *new_node;
	s32 slot_seg;

	dev_dbg(bridge, "%s: dw_gpp_base_pa %x ul_size %x dsp_addr_offset %x "
			"dw_dsp_base %x ul_dsp_size %x gpp_base_va %x\n",
			__func__, dw_gpp_base_pa, ul_size, dsp_addr_offset,
			dw_dsp_base, ul_dsp_size, gpp_base_va);

	if (!hcmm_mgr)
		return -EFAULT;

	/* make sure we have room for another allocator */
	mutex_lock(&cmm_mgr_obj->cmm_lock);

	slot_seg = get_slot(cmm_mgr_obj);
	if (slot_seg < 0) {
		status = -EPERM;
		goto func_end;
	}

	/* Check if input ul_size is big enough to alloc at least one block */
	if (ul_size < cmm_mgr_obj->min_block_size) {
		status = -EINVAL;
		goto func_end;
	}

	/* create, zero, and tag an SM allocator object */
	psma = kzalloc(sizeof(struct cmm_allocator), GFP_KERNEL);
	if (!psma) {
		status = -ENOMEM;
		goto func_end;
	}

	psma->cmm_mgr = hcmm_mgr;	/* ref to parent */
	psma->shm_base = dw_gpp_base_pa;	/* SM Base phys */
	psma->sm_size = ul_size;	/* SM segment size in bytes */
	psma->vm_base = gpp_base_va;
	psma->dsp_phys_addr_offset = dsp_addr_offset;
	psma->c_factor = c_factor;
	psma->dsp_base = dw_dsp_base;
	psma->dsp_size = ul_dsp_size;
	if (psma->vm_base == 0) {
		status = -EPERM;
		goto func_end;
	}
	/* return the actual segment identifier */
	*sgmt_id = (u32) slot_seg + 1;

	INIT_LIST_HEAD(&psma->free_list);
	INIT_LIST_HEAD(&psma->in_use_list);

	/* Get a mem node for this hunk-o-memory */
	new_node = get_node(cmm_mgr_obj, dw_gpp_base_pa,
			psma->vm_base, ul_size);
	/* Place node on the SM allocator's free list */
	if (new_node) {
		list_add_tail(&new_node->link, &psma->free_list);
	} else {
		status = -ENOMEM;
		goto func_end;
	}
	/* make entry */
	cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] = psma;

func_end:
	/* Cleanup allocator */
	if (status && psma)
		un_register_gppsm_seg(psma);
	mutex_unlock(&cmm_mgr_obj->cmm_lock);

	return status;
}

/*
 *  ======== cmm_un_register_gppsm_seg ========
 *  Purpose:
 *      UnRegister GPP SM segments with the CMM.
 */
int cmm_un_register_gppsm_seg(struct cmm_object *hcmm_mgr,
				     u32 ul_seg_id)
{
	struct cmm_object *cmm_mgr_obj = (struct cmm_object *)hcmm_mgr;
	int status = 0;
	struct cmm_allocator *psma;
	u32 ul_id = ul_seg_id;

	if (!hcmm_mgr)
		return -EFAULT;

	if (ul_seg_id == CMM_ALLSEGMENTS)
		ul_id = 1;

	if ((ul_id <= 0) || (ul_id > CMM_MAXGPPSEGS))
		return -EINVAL;

	/*
	 * FIXME: CMM_MAXGPPSEGS == 1. why use a while cycle? Seems to me like
	 * the ul_seg_id is not needed here. It must be always 1.
	 */
	while (ul_id <= CMM_MAXGPPSEGS) {
		mutex_lock(&cmm_mgr_obj->cmm_lock);
		/* slot = seg_id-1 */
		psma = cmm_mgr_obj->pa_gppsm_seg_tab[ul_id - 1];
		if (psma != NULL) {
			un_register_gppsm_seg(psma);
			/* Set alctr ptr to NULL for future reuse */
			cmm_mgr_obj->pa_gppsm_seg_tab[ul_id - 1] = NULL;
		} else if (ul_seg_id != CMM_ALLSEGMENTS) {
			status = -EPERM;
		}
		mutex_unlock(&cmm_mgr_obj->cmm_lock);
		if (ul_seg_id != CMM_ALLSEGMENTS)
			break;

		ul_id++;
	}	/* end while */
	return status;
}

/*
 *  ======== un_register_gppsm_seg ========
 *  Purpose:
 *      UnRegister the SM allocator by freeing all its resources and
 *      nulling cmm mgr table entry.
 *  Note:
 *      This routine is always called within cmm lock crit sect.
 */
static void un_register_gppsm_seg(struct cmm_allocator *psma)
{
	struct cmm_mnode *curr, *tmp;

	/* free nodes on free list */
	list_for_each_entry_safe(curr, tmp, &psma->free_list, link) {
		list_del(&curr->link);
		kfree(curr);
	}

	/* free nodes on InUse list */
	list_for_each_entry_safe(curr, tmp, &psma->in_use_list, link) {
		list_del(&curr->link);
		kfree(curr);
	}

	if ((void *)psma->vm_base != NULL)
		MEM_UNMAP_LINEAR_ADDRESS((void *)psma->vm_base);

	/* Free allocator itself */
	kfree(psma);
}

/*
 *  ======== get_slot ========
 *  Purpose:
 *      An available slot # is returned. Returns negative on failure.
 */
static s32 get_slot(struct cmm_object *cmm_mgr_obj)
{
	s32 slot_seg = -1;	/* neg on failure */
	/* get first available slot in cmm mgr SMSegTab[] */
	for (slot_seg = 0; slot_seg < CMM_MAXGPPSEGS; slot_seg++) {
		if (cmm_mgr_obj->pa_gppsm_seg_tab[slot_seg] == NULL)
			break;

	}
	if (slot_seg == CMM_MAXGPPSEGS)
		slot_seg = -1;	/* failed */

	return slot_seg;
}

/*
 *  ======== get_node ========
 *  Purpose:
 *      Get a memory node from freelist or create a new one.
 */
static struct cmm_mnode *get_node(struct cmm_object *cmm_mgr_obj, u32 dw_pa,
				  u32 dw_va, u32 ul_size)
{
	struct cmm_mnode *pnode;

	/* Check cmm mgr's node freelist */
	if (list_empty(&cmm_mgr_obj->node_free_list)) {
		pnode = kzalloc(sizeof(struct cmm_mnode), GFP_KERNEL);
		if (!pnode)
			return NULL;
	} else {
		/* surely a valid element */
		pnode = list_first_entry(&cmm_mgr_obj->node_free_list,
				struct cmm_mnode, link);
		list_del_init(&pnode->link);
	}

	pnode->pa = dw_pa;
	pnode->va = dw_va;
	pnode->size = ul_size;

	return pnode;
}

/*
 *  ======== delete_node ========
 *  Purpose:
 *      Put a memory node on the cmm nodelist for later use.
 *      Doesn't actually delete the node. Heap thrashing friendly.
 */
static void delete_node(struct cmm_object *cmm_mgr_obj, struct cmm_mnode *pnode)
{
	list_add_tail(&pnode->link, &cmm_mgr_obj->node_free_list);
}

/*
 * ====== get_free_block ========
 *  Purpose:
 *      Scan the free block list and return the first block that satisfies
 *      the size.
 */
static struct cmm_mnode *get_free_block(struct cmm_allocator *allocator,
					u32 usize)
{
	struct cmm_mnode *node, *tmp;

	if (!allocator)
		return NULL;

	list_for_each_entry_safe(node, tmp, &allocator->free_list, link) {
		if (usize <= node->size) {
			list_del(&node->link);
			return node;
		}
	}

	return NULL;
}

/*
 *  ======== add_to_free_list ========
 *  Purpose:
 *      Coalesce node into the freelist in ascending size order.
 */
static void add_to_free_list(struct cmm_allocator *allocator,
			     struct cmm_mnode *node)
{
	struct cmm_mnode *curr;

	if (!node) {
		pr_err("%s: failed - node is NULL\n", __func__);
		return;
	}

	list_for_each_entry(curr, &allocator->free_list, link) {
		if (NEXT_PA(curr) == node->pa) {
			curr->size += node->size;
			delete_node(allocator->cmm_mgr, node);
			return;
		}
		if (curr->pa == NEXT_PA(node)) {
			curr->pa = node->pa;
			curr->va = node->va;
			curr->size += node->size;
			delete_node(allocator->cmm_mgr, node);
			return;
		}
	}
	list_for_each_entry(curr, &allocator->free_list, link) {
		if (curr->size >= node->size) {
			list_add_tail(&node->link, &curr->link);
			return;
		}
	}
	list_add_tail(&node->link, &allocator->free_list);
}

/*
 * ======== get_allocator ========
 *  Purpose:
 *      Return the allocator for the given SM Segid.
 *      SegIds:  1,2,3..max.
 */
static struct cmm_allocator *get_allocator(struct cmm_object *cmm_mgr_obj,
					   u32 ul_seg_id)
{
	return cmm_mgr_obj->pa_gppsm_seg_tab[ul_seg_id - 1];
}

/*
 *  The CMM_Xlator[xxx] routines below are used by Node and Stream
 *  to perform SM address translation to the client process address space.
 *  A "translator" object is created by a node/stream for each SM seg used.
 */

/*
 *  ======== cmm_xlator_create ========
 *  Purpose:
 *      Create an address translator object.
 */
int cmm_xlator_create(struct cmm_xlatorobject **xlator,
			     struct cmm_object *hcmm_mgr,
			     struct cmm_xlatorattrs *xlator_attrs)
{
	struct cmm_xlator *xlator_object = NULL;
	int status = 0;

	*xlator = NULL;
	if (xlator_attrs == NULL)
		xlator_attrs = &cmm_dfltxlatorattrs;	/* set defaults */

	xlator_object = kzalloc(sizeof(struct cmm_xlator), GFP_KERNEL);
	if (xlator_object != NULL) {
		xlator_object->cmm_mgr = hcmm_mgr;	/* ref back to CMM */
		/* SM seg_id */
		xlator_object->seg_id = xlator_attrs->seg_id;
	} else {
		status = -ENOMEM;
	}
	if (!status)
		*xlator = (struct cmm_xlatorobject *)xlator_object;

	return status;
}

/*
 *  ======== cmm_xlator_alloc_buf ========
 */
void *cmm_xlator_alloc_buf(struct cmm_xlatorobject *xlator, void *va_buf,
			   u32 pa_size)
{
	struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
	void *pbuf = NULL;
	void *tmp_va_buff;
	struct cmm_attrs attrs;

	if (xlator_obj) {
		attrs.seg_id = xlator_obj->seg_id;
		__raw_writel(0, va_buf);
		/* Alloc SM */
		pbuf =
		    cmm_calloc_buf(xlator_obj->cmm_mgr, pa_size, &attrs, NULL);
		if (pbuf) {
			/* convert to translator(node/strm) process Virtual
			 * address */
			 tmp_va_buff = cmm_xlator_translate(xlator,
							 pbuf, CMM_PA2VA);
			__raw_writel((u32)tmp_va_buff, va_buf);
		}
	}
	return pbuf;
}

/*
 *  ======== cmm_xlator_free_buf ========
 *  Purpose:
 *      Free the given SM buffer and descriptor.
 *      Does not free virtual memory.
 */
int cmm_xlator_free_buf(struct cmm_xlatorobject *xlator, void *buf_va)
{
	struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
	int status = -EPERM;
	void *buf_pa = NULL;

	if (xlator_obj) {
		/* convert Va to Pa so we can free it. */
		buf_pa = cmm_xlator_translate(xlator, buf_va, CMM_VA2PA);
		if (buf_pa) {
			status = cmm_free_buf(xlator_obj->cmm_mgr, buf_pa,
					      xlator_obj->seg_id);
			if (status) {
				/* Uh oh, this shouldn't happen. Descriptor
				 * gone! */
				pr_err("%s, line %d: Assertion failed\n",
				       __FILE__, __LINE__);
			}
		}
	}
	return status;
}

/*
 *  ======== cmm_xlator_info ========
 *  Purpose:
 *      Set/Get translator info.
 */
int cmm_xlator_info(struct cmm_xlatorobject *xlator, u8 ** paddr,
			   u32 ul_size, u32 segm_id, bool set_info)
{
	struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
	int status = 0;

	if (xlator_obj) {
		if (set_info) {
			/* set translators virtual address range */
			xlator_obj->virt_base = (u32) *paddr;
			xlator_obj->virt_size = ul_size;
		} else {	/* return virt base address */
			*paddr = (u8 *) xlator_obj->virt_base;
		}
	} else {
		status = -EFAULT;
	}
	return status;
}

/*
 *  ======== cmm_xlator_translate ========
 */
void *cmm_xlator_translate(struct cmm_xlatorobject *xlator, void *paddr,
			   enum cmm_xlatetype xtype)
{
	u32 dw_addr_xlate = 0;
	struct cmm_xlator *xlator_obj = (struct cmm_xlator *)xlator;
	struct cmm_object *cmm_mgr_obj = NULL;
	struct cmm_allocator *allocator = NULL;
	u32 dw_offset = 0;

	if (!xlator_obj)
		goto loop_cont;

	cmm_mgr_obj = (struct cmm_object *)xlator_obj->cmm_mgr;
	/* get this translator's default SM allocator */
	allocator = cmm_mgr_obj->pa_gppsm_seg_tab[xlator_obj->seg_id - 1];
	if (!allocator)
		goto loop_cont;

	if ((xtype == CMM_VA2DSPPA) || (xtype == CMM_VA2PA) ||
	    (xtype == CMM_PA2VA)) {
		if (xtype == CMM_PA2VA) {
			/* Gpp Va = Va Base + offset */
			dw_offset = (u8 *) paddr - (u8 *) (allocator->shm_base -
							   allocator->
							   dsp_size);
			dw_addr_xlate = xlator_obj->virt_base + dw_offset;
			/* Check if translated Va base is in range */
			if ((dw_addr_xlate < xlator_obj->virt_base) ||
			    (dw_addr_xlate >=
			     (xlator_obj->virt_base +
			      xlator_obj->virt_size))) {
				dw_addr_xlate = 0;	/* bad address */
			}
		} else {
			/* Gpp PA =  Gpp Base + offset */
			dw_offset =
			    (u8 *) paddr - (u8 *) xlator_obj->virt_base;
			dw_addr_xlate =
			    allocator->shm_base - allocator->dsp_size +
			    dw_offset;
		}
	} else {
		dw_addr_xlate = (u32) paddr;
	}
	/*Now convert address to proper target physical address if needed */
	if ((xtype == CMM_VA2DSPPA) || (xtype == CMM_PA2DSPPA)) {
		/* Got Gpp Pa now, convert to DSP Pa */
		dw_addr_xlate =
		    GPPPA2DSPPA((allocator->shm_base - allocator->dsp_size),
				dw_addr_xlate,
				allocator->dsp_phys_addr_offset *
				allocator->c_factor);
	} else if (xtype == CMM_DSPPA2PA) {
		/* Got DSP Pa, convert to GPP Pa */
		dw_addr_xlate =
		    DSPPA2GPPPA(allocator->shm_base - allocator->dsp_size,
				dw_addr_xlate,
				allocator->dsp_phys_addr_offset *
				allocator->c_factor);
	}
loop_cont:
	return (void *)dw_addr_xlate;
}