Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
#include "wb35reg_f.h"

#include <linux/usb.h>
#include <linux/slab.h>

extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);

/*
 * true  : read command process successfully
 * false : register not support
 * RegisterNo : start base
 * pRegisterData : data point
 * NumberOfData : number of register data
 * Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
 *	  NO_INCREMENT - Function will write data into the same register
 */
unsigned char Wb35Reg_BurstWrite(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterData, u8 NumberOfData, u8 Flag)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct urb		*urb = NULL;
	struct wb35_reg_queue	*reg_queue = NULL;
	u16			UrbSize;
	struct usb_ctrlrequest	*dr;
	u16			i, DataSize = NumberOfData * 4;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	/* Trying to use burst write function if use new hardware */
	UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
	reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
	urb = usb_alloc_urb(0, GFP_ATOMIC);
	if (urb && reg_queue) {
		reg_queue->DIRECT = 2; /* burst write register */
		reg_queue->INDEX = RegisterNo;
		reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
		memcpy(reg_queue->pBuffer, pRegisterData, DataSize);
		/* the function for reversing register data from little endian to big endian */
		for (i = 0; i < NumberOfData ; i++)
			reg_queue->pBuffer[i] = cpu_to_le32(reg_queue->pBuffer[i]);

		dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
		dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
		dr->bRequest = 0x04; /* USB or vendor-defined request code, burst mode */
		dr->wValue = cpu_to_le16(Flag); /* 0: Register number auto-increment, 1: No auto increment */
		dr->wIndex = cpu_to_le16(RegisterNo);
		dr->wLength = cpu_to_le16(DataSize);
		reg_queue->Next = NULL;
		reg_queue->pUsbReq = dr;
		reg_queue->urb = urb;

		spin_lock_irq(&reg->EP0VM_spin_lock);
		if (reg->reg_first == NULL)
			reg->reg_first = reg_queue;
		else
			reg->reg_last->Next = reg_queue;
		reg->reg_last = reg_queue;

		spin_unlock_irq(&reg->EP0VM_spin_lock);

		/* Start EP0VM */
		Wb35Reg_EP0VM_start(pHwData);

		return true;
	} else {
		if (urb)
			usb_free_urb(urb);
		kfree(reg_queue);
		return false;
	}
   return false;
}

void Wb35Reg_Update(struct hw_data *pHwData,  u16 RegisterNo,  u32 RegisterValue)
{
	struct wb35_reg *reg = &pHwData->reg;
	switch (RegisterNo) {
	case 0x3b0: reg->U1B0 = RegisterValue; break;
	case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
	case 0x400: reg->D00_DmaControl = RegisterValue; break;
	case 0x800: reg->M00_MacControl = RegisterValue; break;
	case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
	case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
	case 0x824: reg->M24_MacControl = RegisterValue; break;
	case 0x828: reg->M28_MacControl = RegisterValue; break;
	case 0x82c: reg->M2C_MacControl = RegisterValue; break;
	case 0x838: reg->M38_MacControl = RegisterValue; break;
	case 0x840: reg->M40_MacControl = RegisterValue; break;
	case 0x844: reg->M44_MacControl = RegisterValue; break;
	case 0x848: reg->M48_MacControl = RegisterValue; break;
	case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
	case 0x860: reg->M60_MacControl = RegisterValue; break;
	case 0x868: reg->M68_MacControl = RegisterValue; break;
	case 0x870: reg->M70_MacControl = RegisterValue; break;
	case 0x874: reg->M74_MacControl = RegisterValue; break;
	case 0x878: reg->M78_ERPInformation = RegisterValue; break;
	case 0x87C: reg->M7C_MacControl = RegisterValue; break;
	case 0x880: reg->M80_MacControl = RegisterValue; break;
	case 0x884: reg->M84_MacControl = RegisterValue; break;
	case 0x888: reg->M88_MacControl = RegisterValue; break;
	case 0x898: reg->M98_MacControl = RegisterValue; break;
	case 0x100c: reg->BB0C = RegisterValue; break;
	case 0x102c: reg->BB2C = RegisterValue; break;
	case 0x1030: reg->BB30 = RegisterValue; break;
	case 0x103c: reg->BB3C = RegisterValue; break;
	case 0x1048: reg->BB48 = RegisterValue; break;
	case 0x104c: reg->BB4C = RegisterValue; break;
	case 0x1050: reg->BB50 = RegisterValue; break;
	case 0x1054: reg->BB54 = RegisterValue; break;
	case 0x1058: reg->BB58 = RegisterValue; break;
	case 0x105c: reg->BB5C = RegisterValue; break;
	case 0x1060: reg->BB60 = RegisterValue; break;
	}
}

/*
 * true  : read command process successfully
 * false : register not support
 */
unsigned char Wb35Reg_WriteSync(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{
	struct wb35_reg *reg = &pHwData->reg;
	int ret = -1;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	RegisterValue = cpu_to_le32(RegisterValue);

	/* update the register by send usb message */
	reg->SyncIoPause = 1;

	/* Wait until EP0VM stop */
	while (reg->EP0vm_state != VM_STOP)
		msleep(10);

	/* Sync IoCallDriver */
	reg->EP0vm_state = VM_RUNNING;
	ret = usb_control_msg(pHwData->udev,
			       usb_sndctrlpipe(pHwData->udev, 0),
			       0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
			       0x0, RegisterNo, &RegisterValue, 4, HZ * 100);
	reg->EP0vm_state = VM_STOP;
	reg->SyncIoPause = 0;

	Wb35Reg_EP0VM_start(pHwData);

	if (ret < 0) {
		pr_debug("EP0 Write register usb message sending error\n");
		pHwData->SurpriseRemove = 1;
		return false;
	}
	return true;
}

/*
 * true  : read command process successfully
 * false : register not support
 */
unsigned char Wb35Reg_Write(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct usb_ctrlrequest	*dr;
	struct urb		*urb = NULL;
	struct wb35_reg_queue	*reg_queue = NULL;
	u16			UrbSize;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	/* update the register by send urb request */
	UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
	reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
	urb = usb_alloc_urb(0, GFP_ATOMIC);
	if (urb && reg_queue) {
		reg_queue->DIRECT = 1; /* burst write register */
		reg_queue->INDEX = RegisterNo;
		reg_queue->VALUE = cpu_to_le32(RegisterValue);
		reg_queue->RESERVED_VALID = false;
		dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
		dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
		dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
		dr->wValue = cpu_to_le16(0x0);
		dr->wIndex = cpu_to_le16(RegisterNo);
		dr->wLength = cpu_to_le16(4);

		/* Enter the sending queue */
		reg_queue->Next = NULL;
		reg_queue->pUsbReq = dr;
		reg_queue->urb = urb;

		spin_lock_irq(&reg->EP0VM_spin_lock);
		if (reg->reg_first == NULL)
			reg->reg_first = reg_queue;
		else
			reg->reg_last->Next = reg_queue;
		reg->reg_last = reg_queue;

		spin_unlock_irq(&reg->EP0VM_spin_lock);

		/* Start EP0VM */
		Wb35Reg_EP0VM_start(pHwData);

		return true;
	} else {
		if (urb)
			usb_free_urb(urb);
		kfree(reg_queue);
		return false;
	}
}

/*
 * This command will be executed with a user defined value. When it completes,
 * this value is useful. For example, hal_set_current_channel will use it.
 * true  : read command process successfully
 * false : register not support
 */
unsigned char Wb35Reg_WriteWithCallbackValue(struct hw_data *pHwData,
						u16 RegisterNo,
						u32 RegisterValue,
						s8 *pValue,
						s8 Len)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct usb_ctrlrequest	*dr;
	struct urb		*urb = NULL;
	struct wb35_reg_queue	*reg_queue = NULL;
	u16			UrbSize;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	/* update the register by send urb request */
	UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
	reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
	urb = usb_alloc_urb(0, GFP_ATOMIC);
	if (urb && reg_queue) {
		reg_queue->DIRECT = 1; /* burst write register */
		reg_queue->INDEX = RegisterNo;
		reg_queue->VALUE = cpu_to_le32(RegisterValue);
		/* NOTE : Users must guarantee the size of value will not exceed the buffer size. */
		memcpy(reg_queue->RESERVED, pValue, Len);
		reg_queue->RESERVED_VALID = true;
		dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
		dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
		dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
		dr->wValue = cpu_to_le16(0x0);
		dr->wIndex = cpu_to_le16(RegisterNo);
		dr->wLength = cpu_to_le16(4);

		/* Enter the sending queue */
		reg_queue->Next = NULL;
		reg_queue->pUsbReq = dr;
		reg_queue->urb = urb;
		spin_lock_irq(&reg->EP0VM_spin_lock);
		if (reg->reg_first == NULL)
			reg->reg_first = reg_queue;
		else
			reg->reg_last->Next = reg_queue;
		reg->reg_last = reg_queue;

		spin_unlock_irq(&reg->EP0VM_spin_lock);

		/* Start EP0VM */
		Wb35Reg_EP0VM_start(pHwData);
		return true;
	} else {
		if (urb)
			usb_free_urb(urb);
		kfree(reg_queue);
		return false;
	}
}

/*
 * true  : read command process successfully
 * false : register not support
 * pRegisterValue : It must be a resident buffer due to
 *		    asynchronous read register.
 */
unsigned char Wb35Reg_ReadSync(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{
	struct wb35_reg *reg = &pHwData->reg;
	u32		*pltmp = pRegisterValue;
	int		ret = -1;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	/* Read the register by send usb message */
	reg->SyncIoPause = 1;

	/* Wait until EP0VM stop */
	while (reg->EP0vm_state != VM_STOP)
		msleep(10);

	reg->EP0vm_state = VM_RUNNING;
	ret = usb_control_msg(pHwData->udev,
			       usb_rcvctrlpipe(pHwData->udev, 0),
			       0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
			       0x0, RegisterNo, pltmp, 4, HZ * 100);

	*pRegisterValue = cpu_to_le32(*pltmp);

	reg->EP0vm_state = VM_STOP;

	Wb35Reg_Update(pHwData, RegisterNo, *pRegisterValue);
	reg->SyncIoPause = 0;

	Wb35Reg_EP0VM_start(pHwData);

	if (ret < 0) {
		pr_debug("EP0 Read register usb message sending error\n");
		pHwData->SurpriseRemove = 1;
		return false;
	}
	return true;
}

/*
 * true  : read command process successfully
 * false : register not support
 * pRegisterValue : It must be a resident buffer due to
 *		    asynchronous read register.
 */
unsigned char Wb35Reg_Read(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct usb_ctrlrequest	*dr;
	struct urb		*urb;
	struct wb35_reg_queue	*reg_queue;
	u16			UrbSize;

	/* Module shutdown */
	if (pHwData->SurpriseRemove)
		return false;

	/* update the variable by send Urb to read register */
	UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
	reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
	urb = usb_alloc_urb(0, GFP_ATOMIC);
	if (urb && reg_queue) {
		reg_queue->DIRECT = 0; /* read register */
		reg_queue->INDEX = RegisterNo;
		reg_queue->pBuffer = pRegisterValue;
		dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
		dr->bRequestType = USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN;
		dr->bRequest = 0x01; /* USB or vendor-defined request code, burst mode */
		dr->wValue = cpu_to_le16(0x0);
		dr->wIndex = cpu_to_le16(RegisterNo);
		dr->wLength = cpu_to_le16(4);

		/* Enter the sending queue */
		reg_queue->Next = NULL;
		reg_queue->pUsbReq = dr;
		reg_queue->urb = urb;
		spin_lock_irq(&reg->EP0VM_spin_lock);
		if (reg->reg_first == NULL)
			reg->reg_first = reg_queue;
		else
			reg->reg_last->Next = reg_queue;
		reg->reg_last = reg_queue;

		spin_unlock_irq(&reg->EP0VM_spin_lock);

		/* Start EP0VM */
		Wb35Reg_EP0VM_start(pHwData);

		return true;
	} else {
		if (urb)
			usb_free_urb(urb);
		kfree(reg_queue);
		return false;
	}
}


void Wb35Reg_EP0VM_start(struct hw_data *pHwData)
{
	struct wb35_reg *reg = &pHwData->reg;

	if (atomic_inc_return(&reg->RegFireCount) == 1) {
		reg->EP0vm_state = VM_RUNNING;
		Wb35Reg_EP0VM(pHwData);
	} else
		atomic_dec(&reg->RegFireCount);
}

void Wb35Reg_EP0VM(struct hw_data *pHwData)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct urb		*urb;
	struct usb_ctrlrequest	*dr;
	u32			*pBuffer;
	int			ret = -1;
	struct wb35_reg_queue	*reg_queue;


	if (reg->SyncIoPause)
		goto cleanup;

	if (pHwData->SurpriseRemove)
		goto cleanup;

	/* Get the register data and send to USB through Irp */
	spin_lock_irq(&reg->EP0VM_spin_lock);
	reg_queue = reg->reg_first;
	spin_unlock_irq(&reg->EP0VM_spin_lock);

	if (!reg_queue)
		goto cleanup;

	/* Get an Urb, send it */
	urb = (struct urb *)reg_queue->urb;

	dr = reg_queue->pUsbReq;
	urb = reg_queue->urb;
	pBuffer = reg_queue->pBuffer;
	if (reg_queue->DIRECT == 1) /* output */
		pBuffer = &reg_queue->VALUE;

	usb_fill_control_urb(urb, pHwData->udev,
			      REG_DIRECTION(pHwData->udev, reg_queue),
			      (u8 *)dr, pBuffer, cpu_to_le16(dr->wLength),
			      Wb35Reg_EP0VM_complete, (void *)pHwData);

	reg->EP0vm_state = VM_RUNNING;

	ret = usb_submit_urb(urb, GFP_ATOMIC);

	if (ret < 0) {
		pr_debug("EP0 Irp sending error\n");
		goto cleanup;
	}
	return;

 cleanup:
	reg->EP0vm_state = VM_STOP;
	atomic_dec(&reg->RegFireCount);
}


void Wb35Reg_EP0VM_complete(struct urb *urb)
{
	struct hw_data		*pHwData = (struct hw_data *)urb->context;
	struct wb35_reg		*reg = &pHwData->reg;
	struct wb35_reg_queue	*reg_queue;


	/* Variable setting */
	reg->EP0vm_state = VM_COMPLETED;
	reg->EP0VM_status = urb->status;

	if (pHwData->SurpriseRemove) { /* Let WbWlanHalt to handle surprise remove */
		reg->EP0vm_state = VM_STOP;
		atomic_dec(&reg->RegFireCount);
	} else {
		/* Complete to send, remove the URB from the first */
		spin_lock_irq(&reg->EP0VM_spin_lock);
		reg_queue = reg->reg_first;
		if (reg_queue == reg->reg_last)
			reg->reg_last = NULL;
		reg->reg_first = reg->reg_first->Next;
		spin_unlock_irq(&reg->EP0VM_spin_lock);

		if (reg->EP0VM_status) {
			pr_debug("EP0 IoCompleteRoutine return error\n");
			reg->EP0vm_state = VM_STOP;
			pHwData->SurpriseRemove = 1;
		} else {
			/* Success. Update the result */

			/* Start the next send */
			Wb35Reg_EP0VM(pHwData);
		}

		kfree(reg_queue);
	}

	usb_free_urb(urb);
}


void Wb35Reg_destroy(struct hw_data *pHwData)
{
	struct wb35_reg		*reg = &pHwData->reg;
	struct urb		*urb;
	struct wb35_reg_queue	*reg_queue;

	Uxx_power_off_procedure(pHwData);

	/* Wait for Reg operation completed */
	do {
		msleep(10); /* Delay for waiting function enter */
	} while (reg->EP0vm_state != VM_STOP);
	msleep(10);  /* Delay for waiting function enter */

	/* Release all the data in RegQueue */
	spin_lock_irq(&reg->EP0VM_spin_lock);
	reg_queue = reg->reg_first;
	while (reg_queue) {
		if (reg_queue == reg->reg_last)
			reg->reg_last = NULL;
		reg->reg_first = reg->reg_first->Next;

		urb = reg_queue->urb;
		spin_unlock_irq(&reg->EP0VM_spin_lock);
		if (urb) {
			usb_free_urb(urb);
			kfree(reg_queue);
		} else {
			pr_debug("EP0 queue release error\n");
		}
		spin_lock_irq(&reg->EP0VM_spin_lock);

		reg_queue = reg->reg_first;
	}
	spin_unlock_irq(&reg->EP0VM_spin_lock);
}

/*
 * =======================================================================
 * The function can be run in passive-level only.
 * =========================================================================
 */
unsigned char Wb35Reg_initial(struct hw_data *pHwData)
{
	struct wb35_reg *reg = &pHwData->reg;
	u32 ltmp;
	u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;

	/* Spin lock is acquired for read and write IRP command */
	spin_lock_init(&reg->EP0VM_spin_lock);

	/* Getting RF module type from EEPROM */
	Wb35Reg_WriteSync(pHwData, 0x03b4, 0x080d0000); /* Start EEPROM access + Read + address(0x0d) */
	Wb35Reg_ReadSync(pHwData, 0x03b4, &ltmp);

	/* Update RF module type and determine the PHY type by inf or EEPROM */
	reg->EEPROMPhyType = (u8)(ltmp & 0xff);
	/*
	 * 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
	 * 16V AL2230, 17 - AL7230, 18 - AL2230S
	 * 32 Reserved
	 * 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
	 */
	if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
		if ((reg->EEPROMPhyType == RF_MAXIM_2825)	||
			(reg->EEPROMPhyType == RF_MAXIM_2827)	||
			(reg->EEPROMPhyType == RF_MAXIM_2828)	||
			(reg->EEPROMPhyType == RF_MAXIM_2829)	||
			(reg->EEPROMPhyType == RF_MAXIM_V1)	||
			(reg->EEPROMPhyType == RF_AIROHA_2230)	||
			(reg->EEPROMPhyType == RF_AIROHA_2230S)	||
			(reg->EEPROMPhyType == RF_AIROHA_7230)	||
			(reg->EEPROMPhyType == RF_WB_242)	||
			(reg->EEPROMPhyType == RF_WB_242_1))
			pHwData->phy_type = reg->EEPROMPhyType;
	}

	/* Power On procedure running. The relative parameter will be set according to phy_type */
	Uxx_power_on_procedure(pHwData);

	/* Reading MAC address */
	Uxx_ReadEthernetAddress(pHwData);

	/* Read VCO trim for RF parameter */
	Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08200000);
	Wb35Reg_ReadSync(pHwData, 0x03b4, &VCO_trim);

	/* Read Antenna On/Off of software flag */
	Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08210000);
	Wb35Reg_ReadSync(pHwData, 0x03b4, &SoftwareSet);

	/* Read TXVGA */
	Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08100000);
	Wb35Reg_ReadSync(pHwData, 0x03b4, &TxVga);

	/* Get Scan interval setting from EEPROM offset 0x1c */
	Wb35Reg_WriteSync(pHwData, 0x03b4, 0x081d0000);
	Wb35Reg_ReadSync(pHwData, 0x03b4, &Region_ScanInterval);

	/* Update Ethernet address */
	memcpy(pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN);

	/* Update software variable */
	pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
	TxVga &= 0x000000ff;
	pHwData->PowerIndexFromEEPROM = (u8)TxVga;
	pHwData->VCO_trim = (u8)VCO_trim & 0xff;
	if (pHwData->VCO_trim == 0xff)
		pHwData->VCO_trim = 0x28;

	reg->EEPROMRegion = (u8)(Region_ScanInterval >> 8);
	if (reg->EEPROMRegion < 1 || reg->EEPROMRegion > 6)
		reg->EEPROMRegion = REGION_AUTO;

	/* For Get Tx VGA from EEPROM */
	GetTxVgaFromEEPROM(pHwData);

	/* Set Scan Interval */
	pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
	if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) /* Is default setting 0xff * 10 */
		pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;

	/* Initial register */
	RFSynthesizer_initial(pHwData);

	BBProcessor_initial(pHwData); /* Async write, must wait until complete */

	Wb35Reg_phy_calibration(pHwData);

	Mxx_initial(pHwData);
	Dxx_initial(pHwData);

	if (pHwData->SurpriseRemove)
		return false;
	else
		return true; /* Initial fail */
}

/*
 * ================================================================
 *  CardComputeCrc --
 *
 *  Description:
 *    Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
 *
 *  Arguments:
 *    Buffer - the input buffer
 *    Length - the length of Buffer
 *
 *  Return Value:
 *    The 32-bit CRC value.
 * ===================================================================
 */
u32 CardComputeCrc(u8 *Buffer, u32 Length)
{
	u32	Crc, Carry;
	u32	i, j;
	u8	CurByte;

	Crc = 0xffffffff;

	for (i = 0; i < Length; i++) {
		CurByte = Buffer[i];
		for (j = 0; j < 8; j++) {
			Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
			Crc <<= 1;
			CurByte >>= 1;
			if (Carry)
				Crc = (Crc ^ 0x04c11db6) | Carry;
		}
	}
	return Crc;
}


/*
 * ==================================================================
 * BitReverse --
 *   Reverse the bits in the input argument, dwData, which is
 *   regarded as a string of bits with the length, DataLength.
 *
 * Arguments:
 *   dwData     :
 *   DataLength :
 *
 * Return:
 *   The converted value.
 * ==================================================================
 */
u32 BitReverse(u32 dwData, u32 DataLength)
{
	u32	HalfLength, i, j;
	u32	BitA, BitB;

	if (DataLength <= 0)
		return 0;	/* No conversion is done. */
	dwData = dwData & (0xffffffff >> (32 - DataLength));

	HalfLength = DataLength / 2;
	for (i = 0, j = DataLength - 1; i < HalfLength; i++, j--) {
		BitA = GetBit(dwData, i);
		BitB = GetBit(dwData, j);
		if (BitA && !BitB) {
			dwData = ClearBit(dwData, i);
			dwData = SetBit(dwData, j);
		} else if (!BitA && BitB) {
			dwData = SetBit(dwData, i);
			dwData = ClearBit(dwData, j);
		} else {
			/* Do nothing since these two bits are of the save values. */
		}
	}
	return dwData;
}

void Wb35Reg_phy_calibration(struct hw_data *pHwData)
{
	u32	BB3c, BB54;

	if ((pHwData->phy_type == RF_WB_242) ||
		(pHwData->phy_type == RF_WB_242_1)) {
		phy_calibration_winbond(pHwData, 2412); /* Sync operation */
		Wb35Reg_ReadSync(pHwData, 0x103c, &BB3c);
		Wb35Reg_ReadSync(pHwData, 0x1054, &BB54);

		pHwData->BB3c_cal = BB3c;
		pHwData->BB54_cal = BB54;

		RFSynthesizer_initial(pHwData);
		BBProcessor_initial(pHwData); /* Async operation */

		Wb35Reg_WriteSync(pHwData, 0x103c, BB3c);
		Wb35Reg_WriteSync(pHwData, 0x1054, BB54);
	}
}