Free Electrons

Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
#include <linux/klist.h>
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
#include <asm/byteorder.h>

#include "remoteproc_internal.h"

static void klist_rproc_get(struct klist_node *n);
static void klist_rproc_put(struct klist_node *n);

/*
 * klist of the available remote processors.
 *
 * We need this in order to support name-based lookups (needed by the
 * rproc_get_by_name()).
 *
 * That said, we don't use rproc_get_by_name() at this point.
 * The use cases that do require its existence should be
 * scrutinized, and hopefully migrated to rproc_boot() using device-based
 * binding.
 *
 * If/when this materializes, we could drop the klist (and the by_name
 * API).
 */
static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);

/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 *
 * Currently this is mostly a stub, but it will be later used to trigger
 * the recovery of the remote processor.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
		unsigned long iova, int flags)
{
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

	/*
	 * Let the iommu core know we're not really handling this fault;
	 * we just plan to use this as a recovery trigger.
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
	struct device *dev = rproc->dev;
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
		dev_dbg(dev, "iommu not found\n");
		return 0;
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

	iommu_set_fault_handler(domain, rproc_iommu_fault);

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
	struct device *dev = rproc->dev;

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}

/**
 * rproc_load_segments() - load firmware segments to memory
 * @rproc: remote processor which will be booted using these fw segments
 * @elf_data: the content of the ELF firmware image
 * @len: firmware size (in bytes)
 *
 * This function loads the firmware segments to memory, where the remote
 * processor expects them.
 *
 * Some remote processors will expect their code and data to be placed
 * in specific device addresses, and can't have them dynamically assigned.
 *
 * We currently support only those kind of remote processors, and expect
 * the program header's paddr member to contain those addresses. We then go
 * through the physically contiguous "carveout" memory regions which we
 * allocated (and mapped) earlier on behalf of the remote processor,
 * and "translate" device address to kernel addresses, so we can copy the
 * segments where they are expected.
 *
 * Currently we only support remote processors that required carveout
 * allocations and got them mapped onto their iommus. Some processors
 * might be different: they might not have iommus, and would prefer to
 * directly allocate memory for every segment/resource. This is not yet
 * supported, though.
 */
static int
rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
{
	struct device *dev = rproc->dev;
	struct elf32_hdr *ehdr;
	struct elf32_phdr *phdr;
	int i, ret = 0;

	ehdr = (struct elf32_hdr *)elf_data;
	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);

	/* go through the available ELF segments */
	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
		u32 da = phdr->p_paddr;
		u32 memsz = phdr->p_memsz;
		u32 filesz = phdr->p_filesz;
		u32 offset = phdr->p_offset;
		void *ptr;

		if (phdr->p_type != PT_LOAD)
			continue;

		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
					phdr->p_type, da, memsz, filesz);

		if (filesz > memsz) {
			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
							filesz, memsz);
			ret = -EINVAL;
			break;
		}

		if (offset + filesz > len) {
			dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
					offset + filesz, len);
			ret = -EINVAL;
			break;
		}

		/* grab the kernel address for this device address */
		ptr = rproc_da_to_va(rproc, da, memsz);
		if (!ptr) {
			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
			ret = -EINVAL;
			break;
		}

		/* put the segment where the remote processor expects it */
		if (phdr->p_filesz)
			memcpy(ptr, elf_data + phdr->p_offset, filesz);

		/*
		 * Zero out remaining memory for this segment.
		 *
		 * This isn't strictly required since dma_alloc_coherent already
		 * did this for us. albeit harmless, we may consider removing
		 * this.
		 */
		if (memsz > filesz)
			memset(ptr + filesz, 0, memsz - filesz);
	}

	return ret;
}

static int
__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
{
	struct rproc *rproc = rvdev->rproc;
	struct device *dev = rproc->dev;
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;

	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);

	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
	}

	/* actual size of vring (in bytes) */
	size = PAGE_ALIGN(vring_size(vring->num, vring->align));

	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
		dev_err(dev, "idr_pre_get failed\n");
		return -ENOMEM;
	}

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
	va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
	if (!va) {
		dev_err(dev, "dma_alloc_coherent failed\n");
		return -EINVAL;
	}

	/* assign an rproc-wide unique index for this vring */
	/* TODO: assign a notifyid for rvdev updates as well */
	ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
	if (ret) {
		dev_err(dev, "idr_get_new failed: %d\n", ret);
		dma_free_coherent(dev, size, va, dma);
		return ret;
	}

	/* let the rproc know the da and notifyid of this vring */
	/* TODO: expose this to remote processor */
	vring->da = dma;
	vring->notifyid = notifyid;

	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
					dma, size, notifyid);

	rvdev->vring[i].len = vring->num;
	rvdev->vring[i].align = vring->align;
	rvdev->vring[i].va = va;
	rvdev->vring[i].dma = dma;
	rvdev->vring[i].notifyid = notifyid;
	rvdev->vring[i].rvdev = rvdev;

	return 0;
}

static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
{
	struct rproc *rproc = rvdev->rproc;

	for (i--; i >= 0; i--) {
		struct rproc_vring *rvring = &rvdev->vring[i];
		int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));

		dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
		idr_remove(&rproc->notifyids, rvring->notifyid);
	}
}

/**
 * rproc_handle_vdev() - handle a vdev fw resource
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
 * @avail: size of available data (for sanity checking the image)
 *
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
{
	struct device *dev = rproc->dev;
	struct rproc_vdev *rvdev;
	int i, ret;

	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
		dev_err(rproc->dev, "vdev rsc is truncated\n");
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
		return -EINVAL;
	}

	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;

	rvdev->rproc = rproc;

	/* allocate the vrings */
	for (i = 0; i < rsc->num_of_vrings; i++) {
		ret = __rproc_handle_vring(rvdev, rsc, i);
		if (ret)
			goto free_vrings;
	}

	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;

	list_add_tail(&rvdev->node, &rproc->rvdevs);

	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
		goto free_vrings;

	return 0;

free_vrings:
	__rproc_free_vrings(rvdev, i);
	kfree(rvdev);
	return ret;
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
 * @avail: size of available data (for sanity checking the image)
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
{
	struct rproc_mem_entry *trace;
	struct device *dev = rproc->dev;
	void *ptr;
	char name[15];

	if (sizeof(*rsc) > avail) {
		dev_err(rproc->dev, "trace rsc is truncated\n");
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
 * @avail: size of available data (for sanity checking the image)
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
{
	struct rproc_mem_entry *mapping;
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

	if (sizeof(*rsc) > avail) {
		dev_err(rproc->dev, "devmem rsc is truncated\n");
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(rproc->dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
		dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

	dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
 * @avail: size of available data (for image validation)
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
{
	struct rproc_mem_entry *carveout, *mapping;
	struct device *dev = rproc->dev;
	dma_addr_t dma;
	void *va;
	int ret;

	if (sizeof(*rsc) > avail) {
		dev_err(rproc->dev, "carveout rsc is truncated\n");
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

	va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
	if (!va) {
		dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);

		/*
		 * Some remote processors might need to know the pa
		 * even though they are behind an IOMMU. E.g., OMAP4's
		 * remote M3 processor needs this so it can control
		 * on-chip hardware accelerators that are not behind
		 * the IOMMU, and therefor must know the pa.
		 *
		 * Generally we don't want to expose physical addresses
		 * if we don't have to (remote processors are generally
		 * _not_ trusted), so we might want to do this only for
		 * remote processor that _must_ have this (e.g. OMAP4's
		 * dual M3 subsystem).
		 */
		rsc->pa = dma;
	}

	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
	dma_free_coherent(dev, rsc->len, va, dma);
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
};

/* handle firmware resource entries before booting the remote processor */
static int
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
{
	struct device *dev = rproc->dev;
	rproc_handle_resource_t handler;
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "rsc: type %d\n", hdr->type);

		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
			continue;
		}

		handler = rproc_handle_rsc[hdr->type];
		if (!handler)
			continue;

		ret = handler(rproc, rsc, avail);
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
{
	struct device *dev = rproc->dev;
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		struct fw_rsc_vdev *vrsc;

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
			break;
	}

	return ret;
}

/**
 * rproc_find_rsc_table() - find the resource table
 * @rproc: the rproc handle
 * @elf_data: the content of the ELF firmware image
 * @len: firmware size (in bytes)
 * @tablesz: place holder for providing back the table size
 *
 * This function finds the resource table inside the remote processor's
 * firmware. It is used both upon the registration of @rproc (in order
 * to look for and register the supported virito devices), and when the
 * @rproc is booted.
 *
 * Returns the pointer to the resource table if it is found, and write its
 * size into @tablesz. If a valid table isn't found, NULL is returned
 * (and @tablesz isn't set).
 */
static struct resource_table *
rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
							int *tablesz)
{
	struct elf32_hdr *ehdr;
	struct elf32_shdr *shdr;
	const char *name_table;
	struct device *dev = rproc->dev;
	struct resource_table *table = NULL;
	int i;

	ehdr = (struct elf32_hdr *)elf_data;
	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;

	/* look for the resource table and handle it */
	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
		int size = shdr->sh_size;
		int offset = shdr->sh_offset;

		if (strcmp(name_table + shdr->sh_name, ".resource_table"))
			continue;

		table = (struct resource_table *)(elf_data + offset);

		/* make sure we have the entire table */
		if (offset + size > len) {
			dev_err(dev, "resource table truncated\n");
			return NULL;
		}

		/* make sure table has at least the header */
		if (sizeof(struct resource_table) > size) {
			dev_err(dev, "header-less resource table\n");
			return NULL;
		}

		/* we don't support any version beyond the first */
		if (table->ver != 1) {
			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
			return NULL;
		}

		/* make sure reserved bytes are zeroes */
		if (table->reserved[0] || table->reserved[1]) {
			dev_err(dev, "non zero reserved bytes\n");
			return NULL;
		}

		/* make sure the offsets array isn't truncated */
		if (table->num * sizeof(table->offset[0]) +
				sizeof(struct resource_table) > size) {
			dev_err(dev, "resource table incomplete\n");
			return NULL;
		}

		*tablesz = shdr->sh_size;
		break;
	}

	return table;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
 * is called whenever @rproc either shuts down or fails to boot.
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
	struct device *dev = rproc->dev;

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
		dma_free_coherent(dev, entry->len, entry->va, entry->dma);
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/* make sure this fw image is sane */
static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
{
	const char *name = rproc->firmware;
	struct device *dev = rproc->dev;
	struct elf32_hdr *ehdr;
	char class;

	if (!fw) {
		dev_err(dev, "failed to load %s\n", name);
		return -EINVAL;
	}

	if (fw->size < sizeof(struct elf32_hdr)) {
		dev_err(dev, "Image is too small\n");
		return -EINVAL;
	}

	ehdr = (struct elf32_hdr *)fw->data;

	/* We only support ELF32 at this point */
	class = ehdr->e_ident[EI_CLASS];
	if (class != ELFCLASS32) {
		dev_err(dev, "Unsupported class: %d\n", class);
		return -EINVAL;
	}

	/* We assume the firmware has the same endianess as the host */
# ifdef __LITTLE_ENDIAN
	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
# else /* BIG ENDIAN */
	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
# endif
		dev_err(dev, "Unsupported firmware endianess\n");
		return -EINVAL;
	}

	if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
		dev_err(dev, "Image is too small\n");
		return -EINVAL;
	}

	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
		dev_err(dev, "Image is corrupted (bad magic)\n");
		return -EINVAL;
	}

	if (ehdr->e_phnum == 0) {
		dev_err(dev, "No loadable segments\n");
		return -EINVAL;
	}

	if (ehdr->e_phoff > fw->size) {
		dev_err(dev, "Firmware size is too small\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
	struct device *dev = rproc->dev;
	const char *name = rproc->firmware;
	struct elf32_hdr *ehdr;
	struct resource_table *table;
	int ret, tablesz;

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

	ehdr = (struct elf32_hdr *)fw->data;

	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

	/*
	 * The ELF entry point is the rproc's boot addr (though this is not
	 * a configurable property of all remote processors: some will always
	 * boot at a specific hardcoded address).
	 */
	rproc->bootaddr = ehdr->e_entry;

	/* look for the resource table */
	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
	if (!table)
		goto clean_up;

	/* handle fw resources which are required to boot rproc */
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
	ret = rproc_load_segments(rproc, fw->data, fw->size);
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
	struct resource_table *table;
	int ret, tablesz;

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

	/* look for the resource table */
	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
		goto out;

out:
	if (fw)
		release_firmware(fw);
	/* allow rproc_unregister() contexts, if any, to proceed */
	complete_all(&rproc->firmware_loading_complete);
}

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

	dev = rproc->dev;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
	if (!try_module_get(dev->driver->owner)) {
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
		module_put(dev->driver->owner);
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
 *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
 *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
 *   you acquired @rproc using rproc_get_by_name()).
 */
void rproc_shutdown(struct rproc *rproc)
{
	struct device *dev = rproc->dev;
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
		module_put(dev->driver->owner);
}
EXPORT_SYMBOL(rproc_shutdown);

/**
 * rproc_release() - completely deletes the existence of a remote processor
 * @kref: the rproc's kref
 *
 * This function should _never_ be called directly.
 *
 * The only reasonable location to use it is as an argument when kref_put'ing
 * @rproc's refcount.
 *
 * This way it will be called when no one holds a valid pointer to this @rproc
 * anymore (and obviously after it is removed from the rprocs klist).
 *
 * Note: this function is not static because rproc_vdev_release() needs it when
 * it decrements @rproc's refcount.
 */
void rproc_release(struct kref *kref)
{
	struct rproc *rproc = container_of(kref, struct rproc, refcount);
	struct rproc_vdev *rvdev, *rvtmp;

	dev_info(rproc->dev, "removing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
		__rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
		list_del(&rvdev->node);
	}

	/*
	 * At this point no one holds a reference to rproc anymore,
	 * so we can directly unroll rproc_alloc()
	 */
	rproc_free(rproc);
}

/* will be called when an rproc is added to the rprocs klist */
static void klist_rproc_get(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

	kref_get(&rproc->refcount);
}

/* will be called when an rproc is removed from the rprocs klist */
static void klist_rproc_put(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

	kref_put(&rproc->refcount, rproc_release);
}

static struct rproc *next_rproc(struct klist_iter *i)
{
	struct klist_node *n;

	n = klist_next(i);
	if (!n)
		return NULL;

	return container_of(n, struct rproc, node);
}

/**
 * rproc_get_by_name() - find a remote processor by name and boot it
 * @name: name of the remote processor
 *
 * Finds an rproc handle using the remote processor's name, and then
 * boot it. If it's already powered on, then just immediately return
 * (successfully).
 *
 * Returns the rproc handle on success, and NULL on failure.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Note: currently this function (and its counterpart rproc_put()) are not
 * being used. We need to scrutinize the use cases
 * that still need them, and see if we can migrate them to use the non
 * name-based boot/shutdown interface.
 */
struct rproc *rproc_get_by_name(const char *name)
{
	struct rproc *rproc;
	struct klist_iter i;
	int ret;

	/* find the remote processor, and upref its refcount */
	klist_iter_init(&rprocs, &i);
	while ((rproc = next_rproc(&i)) != NULL)
		if (!strcmp(rproc->name, name)) {
			kref_get(&rproc->refcount);
			break;
		}
	klist_iter_exit(&i);

	/* can't find this rproc ? */
	if (!rproc) {
		pr_err("can't find remote processor %s\n", name);
		return NULL;
	}

	ret = rproc_boot(rproc);
	if (ret < 0) {
		kref_put(&rproc->refcount, rproc_release);
		return NULL;
	}

	return rproc;
}
EXPORT_SYMBOL(rproc_get_by_name);

/**
 * rproc_put() - decrement the refcount of a remote processor, and shut it down
 * @rproc: the remote processor
 *
 * This function tries to shutdown @rproc, and it then decrements its
 * refcount.
 *
 * After this function returns, @rproc may _not_ be used anymore, and its
 * handle should be considered invalid.
 *
 * This function should be called _iff_ the @rproc handle was grabbed by
 * calling rproc_get_by_name().
 */
void rproc_put(struct rproc *rproc)
{
	/* try to power off the remote processor */
	rproc_shutdown(rproc);

	/* downref rproc's refcount */
	kref_put(&rproc->refcount, rproc_release);
}
EXPORT_SYMBOL(rproc_put);

/**
 * rproc_register() - register a remote processor
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
 * of registering this remote processor, additional virtio drivers might be
 * probed.
 */
int rproc_register(struct rproc *rproc)
{
	struct device *dev = rproc->dev;
	int ret = 0;

	/* expose to rproc_get_by_name users */
	klist_add_tail(&rproc->node, &rprocs);

	dev_info(rproc->dev, "%s is available\n", rproc->name);

	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

	/* rproc_unregister() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
					rproc->firmware, dev, GFP_KERNEL,
					rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
		klist_remove(&rproc->node);
	}

	return ret;
}
EXPORT_SYMBOL(rproc_register);

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
 * implementations should then call rproc_register() to complete
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->dev = dev;
	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

	atomic_set(&rproc->power, 0);

	kref_init(&rproc->refcount);

	mutex_init(&rproc->lock);

	idr_init(&rproc->notifyids);

	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
	INIT_LIST_HEAD(&rproc->rvdevs);

	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
 * @rproc: the remote processor handle
 *
 * This function should _only_ be used if @rproc was only allocated,
 * but not registered yet.
 *
 * If @rproc was already successfully registered (by calling rproc_register()),
 * then use rproc_unregister() instead.
 */
void rproc_free(struct rproc *rproc)
{
	idr_remove_all(&rproc->notifyids);
	idr_destroy(&rproc->notifyids);

	kfree(rproc);
}
EXPORT_SYMBOL(rproc_free);

/**
 * rproc_unregister() - unregister a remote processor
 * @rproc: rproc handle to unregister
 *
 * Unregisters a remote processor, and decrements its refcount.
 * If its refcount drops to zero, then @rproc will be freed. If not,
 * it will be freed later once the last reference is dropped.
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
 * _only_ be called if a previous invocation of rproc_register()
 * has completed successfully.
 *
 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
 * it shouldn't be used. More specifically, don't call rproc_free()
 * or try to directly free @rproc after rproc_unregister() returns;
 * none of these are needed, and calling them is a bug.
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
int rproc_unregister(struct rproc *rproc)
{
	struct rproc_vdev *rvdev;

	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

	/* clean up remote vdev entries */
	list_for_each_entry(rvdev, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* the rproc is downref'ed as soon as it's removed from the klist */
	klist_del(&rproc->node);

	/* the rproc will only be released after its refcount drops to zero */
	kref_put(&rproc->refcount, rproc_release);

	return 0;
}
EXPORT_SYMBOL(rproc_unregister);

static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");