Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/*
 *  linux/arch/arm/plat-pxa/gpio.c
 *
 *  Generic PXA GPIO handling
 *
 *  Author:	Nicolas Pitre
 *  Created:	Jun 15, 2001
 *  Copyright:	MontaVista Software Inc.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 */
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/gpio-pxa.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/syscore_ops.h>
#include <linux/slab.h>

#include <mach/irqs.h>

/*
 * We handle the GPIOs by banks, each bank covers up to 32 GPIOs with
 * one set of registers. The register offsets are organized below:
 *
 *           GPLR    GPDR    GPSR    GPCR    GRER    GFER    GEDR
 * BANK 0 - 0x0000  0x000C  0x0018  0x0024  0x0030  0x003C  0x0048
 * BANK 1 - 0x0004  0x0010  0x001C  0x0028  0x0034  0x0040  0x004C
 * BANK 2 - 0x0008  0x0014  0x0020  0x002C  0x0038  0x0044  0x0050
 *
 * BANK 3 - 0x0100  0x010C  0x0118  0x0124  0x0130  0x013C  0x0148
 * BANK 4 - 0x0104  0x0110  0x011C  0x0128  0x0134  0x0140  0x014C
 * BANK 5 - 0x0108  0x0114  0x0120  0x012C  0x0138  0x0144  0x0150
 *
 * NOTE:
 *   BANK 3 is only available on PXA27x and later processors.
 *   BANK 4 and 5 are only available on PXA935
 */

#define GPLR_OFFSET	0x00
#define GPDR_OFFSET	0x0C
#define GPSR_OFFSET	0x18
#define GPCR_OFFSET	0x24
#define GRER_OFFSET	0x30
#define GFER_OFFSET	0x3C
#define GEDR_OFFSET	0x48
#define GAFR_OFFSET	0x54
#define ED_MASK_OFFSET	0x9C	/* GPIO edge detection for AP side */

#define BANK_OFF(n)	(((n) < 3) ? (n) << 2 : 0x100 + (((n) - 3) << 2))

int pxa_last_gpio;

struct pxa_gpio_chip {
	struct gpio_chip chip;
	void __iomem	*regbase;
	char label[10];

	unsigned long	irq_mask;
	unsigned long	irq_edge_rise;
	unsigned long	irq_edge_fall;
	int (*set_wake)(unsigned int gpio, unsigned int on);

#ifdef CONFIG_PM
	unsigned long	saved_gplr;
	unsigned long	saved_gpdr;
	unsigned long	saved_grer;
	unsigned long	saved_gfer;
#endif
};

enum {
	PXA25X_GPIO = 0,
	PXA26X_GPIO,
	PXA27X_GPIO,
	PXA3XX_GPIO,
	PXA93X_GPIO,
	MMP_GPIO = 0x10,
	MMP2_GPIO,
};

static DEFINE_SPINLOCK(gpio_lock);
static struct pxa_gpio_chip *pxa_gpio_chips;
static int gpio_type;
static void __iomem *gpio_reg_base;

#define for_each_gpio_chip(i, c)			\
	for (i = 0, c = &pxa_gpio_chips[0]; i <= pxa_last_gpio; i += 32, c++)

static inline void __iomem *gpio_chip_base(struct gpio_chip *c)
{
	return container_of(c, struct pxa_gpio_chip, chip)->regbase;
}

static inline struct pxa_gpio_chip *gpio_to_pxachip(unsigned gpio)
{
	return &pxa_gpio_chips[gpio_to_bank(gpio)];
}

static inline int gpio_is_pxa_type(int type)
{
	return (type & MMP_GPIO) == 0;
}

static inline int gpio_is_mmp_type(int type)
{
	return (type & MMP_GPIO) != 0;
}

/* GPIO86/87/88/89 on PXA26x have their direction bits in PXA_GPDR(2 inverted,
 * as well as their Alternate Function value being '1' for GPIO in GAFRx.
 */
static inline int __gpio_is_inverted(int gpio)
{
	if ((gpio_type == PXA26X_GPIO) && (gpio > 85))
		return 1;
	return 0;
}

/*
 * On PXA25x and PXA27x, GAFRx and GPDRx together decide the alternate
 * function of a GPIO, and GPDRx cannot be altered once configured. It
 * is attributed as "occupied" here (I know this terminology isn't
 * accurate, you are welcome to propose a better one :-)
 */
static inline int __gpio_is_occupied(unsigned gpio)
{
	struct pxa_gpio_chip *pxachip;
	void __iomem *base;
	unsigned long gafr = 0, gpdr = 0;
	int ret, af = 0, dir = 0;

	pxachip = gpio_to_pxachip(gpio);
	base = gpio_chip_base(&pxachip->chip);
	gpdr = readl_relaxed(base + GPDR_OFFSET);

	switch (gpio_type) {
	case PXA25X_GPIO:
	case PXA26X_GPIO:
	case PXA27X_GPIO:
		gafr = readl_relaxed(base + GAFR_OFFSET);
		af = (gafr >> ((gpio & 0xf) * 2)) & 0x3;
		dir = gpdr & GPIO_bit(gpio);

		if (__gpio_is_inverted(gpio))
			ret = (af != 1) || (dir == 0);
		else
			ret = (af != 0) || (dir != 0);
		break;
	default:
		ret = gpdr & GPIO_bit(gpio);
		break;
	}
	return ret;
}

#ifdef CONFIG_ARCH_PXA
static inline int __pxa_gpio_to_irq(int gpio)
{
	if (gpio_is_pxa_type(gpio_type))
		return PXA_GPIO_TO_IRQ(gpio);
	return -1;
}

static inline int __pxa_irq_to_gpio(int irq)
{
	if (gpio_is_pxa_type(gpio_type))
		return irq - PXA_GPIO_TO_IRQ(0);
	return -1;
}
#else
static inline int __pxa_gpio_to_irq(int gpio) { return -1; }
static inline int __pxa_irq_to_gpio(int irq) { return -1; }
#endif

#ifdef CONFIG_ARCH_MMP
static inline int __mmp_gpio_to_irq(int gpio)
{
	if (gpio_is_mmp_type(gpio_type))
		return MMP_GPIO_TO_IRQ(gpio);
	return -1;
}

static inline int __mmp_irq_to_gpio(int irq)
{
	if (gpio_is_mmp_type(gpio_type))
		return irq - MMP_GPIO_TO_IRQ(0);
	return -1;
}
#else
static inline int __mmp_gpio_to_irq(int gpio) { return -1; }
static inline int __mmp_irq_to_gpio(int irq) { return -1; }
#endif

static int pxa_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
{
	int gpio, ret;

	gpio = chip->base + offset;
	ret = __pxa_gpio_to_irq(gpio);
	if (ret >= 0)
		return ret;
	return __mmp_gpio_to_irq(gpio);
}

int pxa_irq_to_gpio(int irq)
{
	int ret;

	ret = __pxa_irq_to_gpio(irq);
	if (ret >= 0)
		return ret;
	return __mmp_irq_to_gpio(irq);
}

static int pxa_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
	void __iomem *base = gpio_chip_base(chip);
	uint32_t value, mask = 1 << offset;
	unsigned long flags;

	spin_lock_irqsave(&gpio_lock, flags);

	value = readl_relaxed(base + GPDR_OFFSET);
	if (__gpio_is_inverted(chip->base + offset))
		value |= mask;
	else
		value &= ~mask;
	writel_relaxed(value, base + GPDR_OFFSET);

	spin_unlock_irqrestore(&gpio_lock, flags);
	return 0;
}

static int pxa_gpio_direction_output(struct gpio_chip *chip,
				     unsigned offset, int value)
{
	void __iomem *base = gpio_chip_base(chip);
	uint32_t tmp, mask = 1 << offset;
	unsigned long flags;

	writel_relaxed(mask, base + (value ? GPSR_OFFSET : GPCR_OFFSET));

	spin_lock_irqsave(&gpio_lock, flags);

	tmp = readl_relaxed(base + GPDR_OFFSET);
	if (__gpio_is_inverted(chip->base + offset))
		tmp &= ~mask;
	else
		tmp |= mask;
	writel_relaxed(tmp, base + GPDR_OFFSET);

	spin_unlock_irqrestore(&gpio_lock, flags);
	return 0;
}

static int pxa_gpio_get(struct gpio_chip *chip, unsigned offset)
{
	return readl_relaxed(gpio_chip_base(chip) + GPLR_OFFSET) & (1 << offset);
}

static void pxa_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
	writel_relaxed(1 << offset, gpio_chip_base(chip) +
				(value ? GPSR_OFFSET : GPCR_OFFSET));
}

static int __devinit pxa_init_gpio_chip(int gpio_end,
					int (*set_wake)(unsigned int, unsigned int))
{
	int i, gpio, nbanks = gpio_to_bank(gpio_end) + 1;
	struct pxa_gpio_chip *chips;

	chips = kzalloc(nbanks * sizeof(struct pxa_gpio_chip), GFP_KERNEL);
	if (chips == NULL) {
		pr_err("%s: failed to allocate GPIO chips\n", __func__);
		return -ENOMEM;
	}

	for (i = 0, gpio = 0; i < nbanks; i++, gpio += 32) {
		struct gpio_chip *c = &chips[i].chip;

		sprintf(chips[i].label, "gpio-%d", i);
		chips[i].regbase = gpio_reg_base + BANK_OFF(i);
		chips[i].set_wake = set_wake;

		c->base  = gpio;
		c->label = chips[i].label;

		c->direction_input  = pxa_gpio_direction_input;
		c->direction_output = pxa_gpio_direction_output;
		c->get = pxa_gpio_get;
		c->set = pxa_gpio_set;
		c->to_irq = pxa_gpio_to_irq;

		/* number of GPIOs on last bank may be less than 32 */
		c->ngpio = (gpio + 31 > gpio_end) ? (gpio_end - gpio + 1) : 32;
		gpiochip_add(c);
	}
	pxa_gpio_chips = chips;
	return 0;
}

/* Update only those GRERx and GFERx edge detection register bits if those
 * bits are set in c->irq_mask
 */
static inline void update_edge_detect(struct pxa_gpio_chip *c)
{
	uint32_t grer, gfer;

	grer = readl_relaxed(c->regbase + GRER_OFFSET) & ~c->irq_mask;
	gfer = readl_relaxed(c->regbase + GFER_OFFSET) & ~c->irq_mask;
	grer |= c->irq_edge_rise & c->irq_mask;
	gfer |= c->irq_edge_fall & c->irq_mask;
	writel_relaxed(grer, c->regbase + GRER_OFFSET);
	writel_relaxed(gfer, c->regbase + GFER_OFFSET);
}

static int pxa_gpio_irq_type(struct irq_data *d, unsigned int type)
{
	struct pxa_gpio_chip *c;
	int gpio = pxa_irq_to_gpio(d->irq);
	unsigned long gpdr, mask = GPIO_bit(gpio);

	c = gpio_to_pxachip(gpio);

	if (type == IRQ_TYPE_PROBE) {
		/* Don't mess with enabled GPIOs using preconfigured edges or
		 * GPIOs set to alternate function or to output during probe
		 */
		if ((c->irq_edge_rise | c->irq_edge_fall) & GPIO_bit(gpio))
			return 0;

		if (__gpio_is_occupied(gpio))
			return 0;

		type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
	}

	gpdr = readl_relaxed(c->regbase + GPDR_OFFSET);

	if (__gpio_is_inverted(gpio))
		writel_relaxed(gpdr | mask,  c->regbase + GPDR_OFFSET);
	else
		writel_relaxed(gpdr & ~mask, c->regbase + GPDR_OFFSET);

	if (type & IRQ_TYPE_EDGE_RISING)
		c->irq_edge_rise |= mask;
	else
		c->irq_edge_rise &= ~mask;

	if (type & IRQ_TYPE_EDGE_FALLING)
		c->irq_edge_fall |= mask;
	else
		c->irq_edge_fall &= ~mask;

	update_edge_detect(c);

	pr_debug("%s: IRQ%d (GPIO%d) - edge%s%s\n", __func__, d->irq, gpio,
		((type & IRQ_TYPE_EDGE_RISING)  ? " rising"  : ""),
		((type & IRQ_TYPE_EDGE_FALLING) ? " falling" : ""));
	return 0;
}

static void pxa_gpio_demux_handler(unsigned int irq, struct irq_desc *desc)
{
	struct pxa_gpio_chip *c;
	int loop, gpio, gpio_base, n;
	unsigned long gedr;

	do {
		loop = 0;
		for_each_gpio_chip(gpio, c) {
			gpio_base = c->chip.base;

			gedr = readl_relaxed(c->regbase + GEDR_OFFSET);
			gedr = gedr & c->irq_mask;
			writel_relaxed(gedr, c->regbase + GEDR_OFFSET);

			n = find_first_bit(&gedr, BITS_PER_LONG);
			while (n < BITS_PER_LONG) {
				loop = 1;

				generic_handle_irq(gpio_to_irq(gpio_base + n));
				n = find_next_bit(&gedr, BITS_PER_LONG, n + 1);
			}
		}
	} while (loop);
}

static void pxa_ack_muxed_gpio(struct irq_data *d)
{
	int gpio = pxa_irq_to_gpio(d->irq);
	struct pxa_gpio_chip *c = gpio_to_pxachip(gpio);

	writel_relaxed(GPIO_bit(gpio), c->regbase + GEDR_OFFSET);
}

static void pxa_mask_muxed_gpio(struct irq_data *d)
{
	int gpio = pxa_irq_to_gpio(d->irq);
	struct pxa_gpio_chip *c = gpio_to_pxachip(gpio);
	uint32_t grer, gfer;

	c->irq_mask &= ~GPIO_bit(gpio);

	grer = readl_relaxed(c->regbase + GRER_OFFSET) & ~GPIO_bit(gpio);
	gfer = readl_relaxed(c->regbase + GFER_OFFSET) & ~GPIO_bit(gpio);
	writel_relaxed(grer, c->regbase + GRER_OFFSET);
	writel_relaxed(gfer, c->regbase + GFER_OFFSET);
}

static int pxa_gpio_set_wake(struct irq_data *d, unsigned int on)
{
	int gpio = pxa_irq_to_gpio(d->irq);
	struct pxa_gpio_chip *c = gpio_to_pxachip(gpio);

	if (c->set_wake)
		return c->set_wake(gpio, on);
	else
		return 0;
}

static void pxa_unmask_muxed_gpio(struct irq_data *d)
{
	int gpio = pxa_irq_to_gpio(d->irq);
	struct pxa_gpio_chip *c = gpio_to_pxachip(gpio);

	c->irq_mask |= GPIO_bit(gpio);
	update_edge_detect(c);
}

static struct irq_chip pxa_muxed_gpio_chip = {
	.name		= "GPIO",
	.irq_ack	= pxa_ack_muxed_gpio,
	.irq_mask	= pxa_mask_muxed_gpio,
	.irq_unmask	= pxa_unmask_muxed_gpio,
	.irq_set_type	= pxa_gpio_irq_type,
	.irq_set_wake	= pxa_gpio_set_wake,
};

static int pxa_gpio_nums(void)
{
	int count = 0;

#ifdef CONFIG_ARCH_PXA
	if (cpu_is_pxa25x()) {
#ifdef CONFIG_CPU_PXA26x
		count = 89;
		gpio_type = PXA26X_GPIO;
#elif defined(CONFIG_PXA25x)
		count = 84;
		gpio_type = PXA26X_GPIO;
#endif /* CONFIG_CPU_PXA26x */
	} else if (cpu_is_pxa27x()) {
		count = 120;
		gpio_type = PXA27X_GPIO;
	} else if (cpu_is_pxa93x() || cpu_is_pxa95x()) {
		count = 191;
		gpio_type = PXA93X_GPIO;
	} else if (cpu_is_pxa3xx()) {
		count = 127;
		gpio_type = PXA3XX_GPIO;
	}
#endif /* CONFIG_ARCH_PXA */

#ifdef CONFIG_ARCH_MMP
	if (cpu_is_pxa168() || cpu_is_pxa910()) {
		count = 127;
		gpio_type = MMP_GPIO;
	} else if (cpu_is_mmp2()) {
		count = 191;
		gpio_type = MMP2_GPIO;
	}
#endif /* CONFIG_ARCH_MMP */
	return count;
}

static int __devinit pxa_gpio_probe(struct platform_device *pdev)
{
	struct pxa_gpio_chip *c;
	struct resource *res;
	struct clk *clk;
	struct pxa_gpio_platform_data *info;
	int gpio, irq, ret;
	int irq0 = 0, irq1 = 0, irq_mux, gpio_offset = 0;

	pxa_last_gpio = pxa_gpio_nums();
	if (!pxa_last_gpio)
		return -EINVAL;

	irq0 = platform_get_irq_byname(pdev, "gpio0");
	irq1 = platform_get_irq_byname(pdev, "gpio1");
	irq_mux = platform_get_irq_byname(pdev, "gpio_mux");
	if ((irq0 > 0 && irq1 <= 0) || (irq0 <= 0 && irq1 > 0)
		|| (irq_mux <= 0))
		return -EINVAL;
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -EINVAL;
	gpio_reg_base = ioremap(res->start, resource_size(res));
	if (!gpio_reg_base)
		return -EINVAL;

	if (irq0 > 0)
		gpio_offset = 2;

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
		dev_err(&pdev->dev, "Error %ld to get gpio clock\n",
			PTR_ERR(clk));
		iounmap(gpio_reg_base);
		return PTR_ERR(clk);
	}
	ret = clk_prepare(clk);
	if (ret) {
		clk_put(clk);
		iounmap(gpio_reg_base);
		return ret;
	}
	ret = clk_enable(clk);
	if (ret) {
		clk_unprepare(clk);
		clk_put(clk);
		iounmap(gpio_reg_base);
		return ret;
	}

	/* Initialize GPIO chips */
	info = dev_get_platdata(&pdev->dev);
	pxa_init_gpio_chip(pxa_last_gpio, info ? info->gpio_set_wake : NULL);

	/* clear all GPIO edge detects */
	for_each_gpio_chip(gpio, c) {
		writel_relaxed(0, c->regbase + GFER_OFFSET);
		writel_relaxed(0, c->regbase + GRER_OFFSET);
		writel_relaxed(~0,c->regbase + GEDR_OFFSET);
		/* unmask GPIO edge detect for AP side */
		if (gpio_is_mmp_type(gpio_type))
			writel_relaxed(~0, c->regbase + ED_MASK_OFFSET);
	}

#ifdef CONFIG_ARCH_PXA
	irq = gpio_to_irq(0);
	irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip,
				 handle_edge_irq);
	set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
	irq_set_chained_handler(IRQ_GPIO0, pxa_gpio_demux_handler);

	irq = gpio_to_irq(1);
	irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip,
				 handle_edge_irq);
	set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
	irq_set_chained_handler(IRQ_GPIO1, pxa_gpio_demux_handler);
#endif

	for (irq  = gpio_to_irq(gpio_offset);
		irq <= gpio_to_irq(pxa_last_gpio); irq++) {
		irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip,
					 handle_edge_irq);
		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
	}

	irq_set_chained_handler(irq_mux, pxa_gpio_demux_handler);
	return 0;
}

static struct platform_driver pxa_gpio_driver = {
	.probe		= pxa_gpio_probe,
	.driver		= {
		.name	= "pxa-gpio",
	},
};

static int __init pxa_gpio_init(void)
{
	return platform_driver_register(&pxa_gpio_driver);
}
postcore_initcall(pxa_gpio_init);

#ifdef CONFIG_PM
static int pxa_gpio_suspend(void)
{
	struct pxa_gpio_chip *c;
	int gpio;

	for_each_gpio_chip(gpio, c) {
		c->saved_gplr = readl_relaxed(c->regbase + GPLR_OFFSET);
		c->saved_gpdr = readl_relaxed(c->regbase + GPDR_OFFSET);
		c->saved_grer = readl_relaxed(c->regbase + GRER_OFFSET);
		c->saved_gfer = readl_relaxed(c->regbase + GFER_OFFSET);

		/* Clear GPIO transition detect bits */
		writel_relaxed(0xffffffff, c->regbase + GEDR_OFFSET);
	}
	return 0;
}

static void pxa_gpio_resume(void)
{
	struct pxa_gpio_chip *c;
	int gpio;

	for_each_gpio_chip(gpio, c) {
		/* restore level with set/clear */
		writel_relaxed( c->saved_gplr, c->regbase + GPSR_OFFSET);
		writel_relaxed(~c->saved_gplr, c->regbase + GPCR_OFFSET);

		writel_relaxed(c->saved_grer, c->regbase + GRER_OFFSET);
		writel_relaxed(c->saved_gfer, c->regbase + GFER_OFFSET);
		writel_relaxed(c->saved_gpdr, c->regbase + GPDR_OFFSET);
	}
}
#else
#define pxa_gpio_suspend	NULL
#define pxa_gpio_resume		NULL
#endif

struct syscore_ops pxa_gpio_syscore_ops = {
	.suspend	= pxa_gpio_suspend,
	.resume		= pxa_gpio_resume,
};

static int __init pxa_gpio_sysinit(void)
{
	register_syscore_ops(&pxa_gpio_syscore_ops);
	return 0;
}
postcore_initcall(pxa_gpio_sysinit);