Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
 * AD5760, AD5780, AD5781, AD5790, AD5791 Voltage Output Digital to Analog
 * Converter
 *
 * Copyright 2011 Analog Devices Inc.
 *
 * Licensed under the GPL-2.
 */

#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>

#include "../iio.h"
#include "../sysfs.h"
#include "dac.h"
#include "ad5791.h"

static int ad5791_spi_write(struct spi_device *spi, u8 addr, u32 val)
{
	union {
		u32 d32;
		u8 d8[4];
	} data;

	data.d32 = cpu_to_be32(AD5791_CMD_WRITE |
			      AD5791_ADDR(addr) |
			      (val & AD5791_DAC_MASK));

	return spi_write(spi, &data.d8[1], 3);
}

static int ad5791_spi_read(struct spi_device *spi, u8 addr, u32 *val)
{
	union {
		u32 d32;
		u8 d8[4];
	} data[3];
	int ret;
	struct spi_message msg;
	struct spi_transfer xfers[] = {
		{
			.tx_buf = &data[0].d8[1],
			.bits_per_word = 8,
			.len = 3,
			.cs_change = 1,
		}, {
			.tx_buf = &data[1].d8[1],
			.rx_buf = &data[2].d8[1],
			.bits_per_word = 8,
			.len = 3,
		},
	};

	data[0].d32 = cpu_to_be32(AD5791_CMD_READ |
			      AD5791_ADDR(addr));
	data[1].d32 = cpu_to_be32(AD5791_ADDR(AD5791_ADDR_NOOP));

	spi_message_init(&msg);
	spi_message_add_tail(&xfers[0], &msg);
	spi_message_add_tail(&xfers[1], &msg);
	ret = spi_sync(spi, &msg);

	*val = be32_to_cpu(data[2].d32);

	return ret;
}

#define AD5791_CHAN(bits, shift) {			\
	.type = IIO_VOLTAGE,				\
	.output = 1,					\
	.indexed = 1,					\
	.address = AD5791_ADDR_DAC0,			\
	.channel = 0,					\
	.info_mask = IIO_CHAN_INFO_SCALE_SHARED_BIT | \
		IIO_CHAN_INFO_OFFSET_SHARED_BIT,	\
	.scan_type = IIO_ST('u', bits, 24, shift)	\
}

static const struct iio_chan_spec ad5791_channels[] = {
	[ID_AD5760] = AD5791_CHAN(16, 4),
	[ID_AD5780] = AD5791_CHAN(18, 2),
	[ID_AD5781] = AD5791_CHAN(18, 2),
	[ID_AD5791] = AD5791_CHAN(20, 0)
};

static ssize_t ad5791_read_powerdown_mode(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5791_state *st = iio_priv(indio_dev);

	const char mode[][14] = {"6kohm_to_gnd", "three_state"};

	return sprintf(buf, "%s\n", mode[st->pwr_down_mode]);
}

static ssize_t ad5791_write_powerdown_mode(struct device *dev,
				       struct device_attribute *attr,
				       const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5791_state *st = iio_priv(indio_dev);
	int ret;

	if (sysfs_streq(buf, "6kohm_to_gnd"))
		st->pwr_down_mode = AD5791_DAC_PWRDN_6K;
	else if (sysfs_streq(buf, "three_state"))
		st->pwr_down_mode = AD5791_DAC_PWRDN_3STATE;
	else
		ret = -EINVAL;

	return ret ? ret : len;
}

static ssize_t ad5791_read_dac_powerdown(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5791_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", st->pwr_down);
}

static ssize_t ad5791_write_dac_powerdown(struct device *dev,
					    struct device_attribute *attr,
					    const char *buf, size_t len)
{
	long readin;
	int ret;
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5791_state *st = iio_priv(indio_dev);

	ret = strict_strtol(buf, 10, &readin);
	if (ret)
		return ret;

	if (readin == 0) {
		st->pwr_down = false;
		st->ctrl &= ~(AD5791_CTRL_OPGND | AD5791_CTRL_DACTRI);
	} else if (readin == 1) {
		st->pwr_down = true;
		if (st->pwr_down_mode == AD5791_DAC_PWRDN_6K)
			st->ctrl |= AD5791_CTRL_OPGND;
		else if (st->pwr_down_mode == AD5791_DAC_PWRDN_3STATE)
			st->ctrl |= AD5791_CTRL_DACTRI;
	} else
		ret = -EINVAL;

	ret = ad5791_spi_write(st->spi, AD5791_ADDR_CTRL, st->ctrl);

	return ret ? ret : len;
}

static IIO_DEVICE_ATTR(out_voltage_powerdown_mode, S_IRUGO |
			S_IWUSR, ad5791_read_powerdown_mode,
			ad5791_write_powerdown_mode, 0);

static IIO_CONST_ATTR(out_voltage_powerdown_mode_available,
			"6kohm_to_gnd three_state");

#define IIO_DEV_ATTR_DAC_POWERDOWN(_num, _show, _store, _addr)		\
	IIO_DEVICE_ATTR(out_voltage##_num##_powerdown,			\
			S_IRUGO | S_IWUSR, _show, _store, _addr)

static IIO_DEV_ATTR_DAC_POWERDOWN(0, ad5791_read_dac_powerdown,
				   ad5791_write_dac_powerdown, 0);

static struct attribute *ad5791_attributes[] = {
	&iio_dev_attr_out_voltage0_powerdown.dev_attr.attr,
	&iio_dev_attr_out_voltage_powerdown_mode.dev_attr.attr,
	&iio_const_attr_out_voltage_powerdown_mode_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group ad5791_attribute_group = {
	.attrs = ad5791_attributes,
};

static int ad5791_get_lin_comp(unsigned int span)
{
	if (span <= 10000)
		return AD5791_LINCOMP_0_10;
	else if (span <= 12000)
		return AD5791_LINCOMP_10_12;
	else if (span <= 16000)
		return AD5791_LINCOMP_12_16;
	else if (span <= 19000)
		return AD5791_LINCOMP_16_19;
	else
		return AD5791_LINCOMP_19_20;
}

static int ad5780_get_lin_comp(unsigned int span)
{
	if (span <= 10000)
		return AD5780_LINCOMP_0_10;
	else
		return AD5780_LINCOMP_10_20;
}
static const struct ad5791_chip_info ad5791_chip_info_tbl[] = {
	[ID_AD5760] = {
		.get_lin_comp = ad5780_get_lin_comp,
	},
	[ID_AD5780] = {
		.get_lin_comp = ad5780_get_lin_comp,
	},
	[ID_AD5781] = {
		.get_lin_comp = ad5791_get_lin_comp,
	},
	[ID_AD5791] = {
		.get_lin_comp = ad5791_get_lin_comp,
	},
};

static int ad5791_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad5791_state *st = iio_priv(indio_dev);
	u64 val64;
	int ret;

	switch (m) {
	case 0:
		ret = ad5791_spi_read(st->spi, chan->address, val);
		if (ret)
			return ret;
		*val &= AD5791_DAC_MASK;
		*val >>= chan->scan_type.shift;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		*val2 = (((u64)st->vref_mv) * 1000000ULL) >> chan->scan_type.realbits;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_OFFSET:
		val64 = (((u64)st->vref_neg_mv) << chan->scan_type.realbits);
		do_div(val64, st->vref_mv);
		*val = -val64;
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}

};


static int ad5791_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val,
			    int val2,
			    long mask)
{
	struct ad5791_state *st = iio_priv(indio_dev);

	switch (mask) {
	case 0:
		val &= AD5791_RES_MASK(chan->scan_type.realbits);
		val <<= chan->scan_type.shift;

		return ad5791_spi_write(st->spi, chan->address, val);

	default:
		return -EINVAL;
	}
}

static const struct iio_info ad5791_info = {
	.read_raw = &ad5791_read_raw,
	.write_raw = &ad5791_write_raw,
	.attrs = &ad5791_attribute_group,
	.driver_module = THIS_MODULE,
};

static int __devinit ad5791_probe(struct spi_device *spi)
{
	struct ad5791_platform_data *pdata = spi->dev.platform_data;
	struct iio_dev *indio_dev;
	struct ad5791_state *st;
	int ret, pos_voltage_uv = 0, neg_voltage_uv = 0;

	indio_dev = iio_allocate_device(sizeof(*st));
	if (indio_dev == NULL) {
		ret = -ENOMEM;
		goto error_ret;
	}
	st = iio_priv(indio_dev);
	st->reg_vdd = regulator_get(&spi->dev, "vdd");
	if (!IS_ERR(st->reg_vdd)) {
		ret = regulator_enable(st->reg_vdd);
		if (ret)
			goto error_put_reg_pos;

		pos_voltage_uv = regulator_get_voltage(st->reg_vdd);
	}

	st->reg_vss = regulator_get(&spi->dev, "vss");
	if (!IS_ERR(st->reg_vss)) {
		ret = regulator_enable(st->reg_vss);
		if (ret)
			goto error_put_reg_neg;

		neg_voltage_uv = regulator_get_voltage(st->reg_vss);
	}

	st->pwr_down = true;
	st->spi = spi;

	if (!IS_ERR(st->reg_vss) && !IS_ERR(st->reg_vdd)) {
		st->vref_mv = (pos_voltage_uv + neg_voltage_uv) / 1000;
		st->vref_neg_mv = neg_voltage_uv / 1000;
	} else if (pdata) {
		st->vref_mv = pdata->vref_pos_mv + pdata->vref_neg_mv;
		st->vref_neg_mv = pdata->vref_neg_mv;
	} else {
		dev_warn(&spi->dev, "reference voltage unspecified\n");
	}

	ret = ad5791_spi_write(spi, AD5791_ADDR_SW_CTRL, AD5791_SWCTRL_RESET);
	if (ret)
		goto error_disable_reg_neg;

	st->chip_info =	&ad5791_chip_info_tbl[spi_get_device_id(spi)
					      ->driver_data];


	st->ctrl = AD5761_CTRL_LINCOMP(st->chip_info->get_lin_comp(st->vref_mv))
		  | ((pdata && pdata->use_rbuf_gain2) ? 0 : AD5791_CTRL_RBUF) |
		  AD5791_CTRL_BIN2SC;

	ret = ad5791_spi_write(spi, AD5791_ADDR_CTRL, st->ctrl |
		AD5791_CTRL_OPGND | AD5791_CTRL_DACTRI);
	if (ret)
		goto error_disable_reg_neg;

	spi_set_drvdata(spi, indio_dev);
	indio_dev->dev.parent = &spi->dev;
	indio_dev->info = &ad5791_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels
		= &ad5791_channels[spi_get_device_id(spi)->driver_data];
	indio_dev->num_channels = 1;
	indio_dev->name = spi_get_device_id(st->spi)->name;
	ret = iio_device_register(indio_dev);
	if (ret)
		goto error_disable_reg_neg;

	return 0;

error_disable_reg_neg:
	if (!IS_ERR(st->reg_vss))
		regulator_disable(st->reg_vss);
error_put_reg_neg:
	if (!IS_ERR(st->reg_vss))
		regulator_put(st->reg_vss);

	if (!IS_ERR(st->reg_vdd))
		regulator_disable(st->reg_vdd);
error_put_reg_pos:
	if (!IS_ERR(st->reg_vdd))
		regulator_put(st->reg_vdd);
	iio_free_device(indio_dev);
error_ret:

	return ret;
}

static int __devexit ad5791_remove(struct spi_device *spi)
{
	struct iio_dev *indio_dev = spi_get_drvdata(spi);
	struct ad5791_state *st = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);
	if (!IS_ERR(st->reg_vdd)) {
		regulator_disable(st->reg_vdd);
		regulator_put(st->reg_vdd);
	}

	if (!IS_ERR(st->reg_vss)) {
		regulator_disable(st->reg_vss);
		regulator_put(st->reg_vss);
	}
	iio_free_device(indio_dev);

	return 0;
}

static const struct spi_device_id ad5791_id[] = {
	{"ad5760", ID_AD5760},
	{"ad5780", ID_AD5780},
	{"ad5781", ID_AD5781},
	{"ad5790", ID_AD5791},
	{"ad5791", ID_AD5791},
	{}
};
MODULE_DEVICE_TABLE(spi, ad5791_id);

static struct spi_driver ad5791_driver = {
	.driver = {
		   .name = "ad5791",
		   .owner = THIS_MODULE,
		   },
	.probe = ad5791_probe,
	.remove = __devexit_p(ad5791_remove),
	.id_table = ad5791_id,
};
module_spi_driver(ad5791_driver);

MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("Analog Devices AD5760/AD5780/AD5781/AD5790/AD5791 DAC");
MODULE_LICENSE("GPL v2");