Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
 *  Intel Linux Wireless <ilw@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/


#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>

#include <net/mac80211.h>

#include "iwl-commands.h"
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-debug.h"
#include "iwl-agn.h"
#include "iwl-eeprom.h"
#include "iwl-io.h"
#include "iwl-prph.h"

/************************** EEPROM BANDS ****************************
 *
 * The iwl_eeprom_band definitions below provide the mapping from the
 * EEPROM contents to the specific channel number supported for each
 * band.
 *
 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
 * The specific geography and calibration information for that channel
 * is contained in the eeprom map itself.
 *
 * During init, we copy the eeprom information and channel map
 * information into priv->channel_info_24/52 and priv->channel_map_24/52
 *
 * channel_map_24/52 provides the index in the channel_info array for a
 * given channel.  We have to have two separate maps as there is channel
 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
 * band_2
 *
 * A value of 0xff stored in the channel_map indicates that the channel
 * is not supported by the hardware at all.
 *
 * A value of 0xfe in the channel_map indicates that the channel is not
 * valid for Tx with the current hardware.  This means that
 * while the system can tune and receive on a given channel, it may not
 * be able to associate or transmit any frames on that
 * channel.  There is no corresponding channel information for that
 * entry.
 *
 *********************************************************************/

/* 2.4 GHz */
const u8 iwl_eeprom_band_1[14] = {
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};

/* 5.2 GHz bands */
static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};

static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};

static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};

static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
	145, 149, 153, 157, 161, 165
};

static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
	1, 2, 3, 4, 5, 6, 7
};

static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};

/******************************************************************************
 *
 * generic NVM functions
 *
******************************************************************************/

/*
 * The device's EEPROM semaphore prevents conflicts between driver and uCode
 * when accessing the EEPROM; each access is a series of pulses to/from the
 * EEPROM chip, not a single event, so even reads could conflict if they
 * weren't arbitrated by the semaphore.
 */

#define	EEPROM_SEM_TIMEOUT 10		/* milliseconds */
#define EEPROM_SEM_RETRY_LIMIT 1000	/* number of attempts (not time) */

static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
{
	u16 count;
	int ret;

	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
		/* Request semaphore */
		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);

		/* See if we got it */
		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				EEPROM_SEM_TIMEOUT);
		if (ret >= 0) {
			IWL_DEBUG_EEPROM(trans,
				"Acquired semaphore after %d tries.\n",
				count+1);
			return ret;
		}
	}

	return ret;
}

static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
{
	iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
		CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);

}

static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
{
	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) &
			   CSR_EEPROM_GP_VALID_MSK;
	int ret = 0;

	IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
	switch (gp) {
	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
		if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
				gp);
			ret = -ENOENT;
		}
		break;
	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
		if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
			ret = -ENOENT;
		}
		break;
	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
	default:
		IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
			"EEPROM_GP=0x%08x\n",
			(trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
			? "OTP" : "EEPROM", gp);
		ret = -ENOENT;
		break;
	}
	return ret;
}

u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
{
	if (!shrd->eeprom)
		return 0;
	return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
}

int iwl_eeprom_check_version(struct iwl_priv *priv)
{
	u16 eeprom_ver;
	u16 calib_ver;

	eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
	calib_ver = iwl_eeprom_calib_version(priv->shrd);

	if (eeprom_ver < cfg(priv)->eeprom_ver ||
	    calib_ver < cfg(priv)->eeprom_calib_ver)
		goto err;

	IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
		 eeprom_ver, calib_ver);

	return 0;
err:
	IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
		  "CALIB=0x%x < 0x%x\n",
		  eeprom_ver, cfg(priv)->eeprom_ver,
		  calib_ver,  cfg(priv)->eeprom_calib_ver);
	return -EINVAL;

}

int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
{
	struct iwl_shared *shrd = priv->shrd;
	u16 radio_cfg;

	hw_params(priv).sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
	if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE &&
	    !cfg(priv)->ht_params) {
		IWL_ERR(priv, "Invalid 11n configuration\n");
		return -EINVAL;
	}

	if (!hw_params(priv).sku) {
		IWL_ERR(priv, "Invalid device sku\n");
		return -EINVAL;
	}

	IWL_INFO(priv, "Device SKU: 0x%X\n", hw_params(priv).sku);

	radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);

	hw_params(priv).valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
	hw_params(priv).valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);

	/* check overrides (some devices have wrong EEPROM) */
	if (cfg(priv)->valid_tx_ant)
		hw_params(priv).valid_tx_ant = cfg(priv)->valid_tx_ant;
	if (cfg(priv)->valid_rx_ant)
		hw_params(priv).valid_rx_ant = cfg(priv)->valid_rx_ant;

	if (!hw_params(priv).valid_tx_ant || !hw_params(priv).valid_rx_ant) {
		IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
			hw_params(priv).valid_tx_ant,
			hw_params(priv).valid_rx_ant);
		return -EINVAL;
	}

	IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
		 hw_params(priv).valid_tx_ant, hw_params(priv).valid_rx_ant);

	return 0;
}

void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
{
	const u8 *addr = iwl_eeprom_query_addr(shrd,
					EEPROM_MAC_ADDRESS);
	memcpy(mac, addr, ETH_ALEN);
}

/******************************************************************************
 *
 * OTP related functions
 *
******************************************************************************/

static void iwl_set_otp_access(struct iwl_trans *trans,
			       enum iwl_access_mode mode)
{
	iwl_read32(trans, CSR_OTP_GP_REG);

	if (mode == IWL_OTP_ACCESS_ABSOLUTE)
		iwl_clear_bit(trans, CSR_OTP_GP_REG,
			      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
	else
		iwl_set_bit(trans, CSR_OTP_GP_REG,
			    CSR_OTP_GP_REG_OTP_ACCESS_MODE);
}

static int iwl_get_nvm_type(struct iwl_trans *trans, u32 hw_rev)
{
	u32 otpgp;
	int nvm_type;

	/* OTP only valid for CP/PP and after */
	switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
	case CSR_HW_REV_TYPE_NONE:
		IWL_ERR(trans, "Unknown hardware type\n");
		return -ENOENT;
	case CSR_HW_REV_TYPE_5300:
	case CSR_HW_REV_TYPE_5350:
	case CSR_HW_REV_TYPE_5100:
	case CSR_HW_REV_TYPE_5150:
		nvm_type = NVM_DEVICE_TYPE_EEPROM;
		break;
	default:
		otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
			nvm_type = NVM_DEVICE_TYPE_OTP;
		else
			nvm_type = NVM_DEVICE_TYPE_EEPROM;
		break;
	}
	return  nvm_type;
}

static int iwl_init_otp_access(struct iwl_trans *trans)
{
	int ret;

	/* Enable 40MHz radio clock */
	iwl_write32(trans, CSR_GP_CNTRL,
		    iwl_read32(trans, CSR_GP_CNTRL) |
		    CSR_GP_CNTRL_REG_FLAG_INIT_DONE);

	/* wait for clock to be ready */
	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
				 25000);
	if (ret < 0)
		IWL_ERR(trans, "Time out access OTP\n");
	else {
		iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
				  APMG_PS_CTRL_VAL_RESET_REQ);
		udelay(5);
		iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
				    APMG_PS_CTRL_VAL_RESET_REQ);

		/*
		 * CSR auto clock gate disable bit -
		 * this is only applicable for HW with OTP shadow RAM
		 */
		if (cfg(trans)->base_params->shadow_ram_support)
			iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
				CSR_RESET_LINK_PWR_MGMT_DISABLED);
	}
	return ret;
}

static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
			     __le16 *eeprom_data)
{
	int ret = 0;
	u32 r;
	u32 otpgp;

	iwl_write32(trans, CSR_EEPROM_REG,
		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
	ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
				 CSR_EEPROM_REG_READ_VALID_MSK,
				 CSR_EEPROM_REG_READ_VALID_MSK,
				 IWL_EEPROM_ACCESS_TIMEOUT);
	if (ret < 0) {
		IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
		return ret;
	}
	r = iwl_read32(trans, CSR_EEPROM_REG);
	/* check for ECC errors: */
	otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
		/* stop in this case */
		/* set the uncorrectable OTP ECC bit for acknowledgement */
		iwl_set_bit(trans, CSR_OTP_GP_REG,
			CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
		IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
		return -EINVAL;
	}
	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
		/* continue in this case */
		/* set the correctable OTP ECC bit for acknowledgement */
		iwl_set_bit(trans, CSR_OTP_GP_REG,
				CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
		IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
	}
	*eeprom_data = cpu_to_le16(r >> 16);
	return 0;
}

/*
 * iwl_is_otp_empty: check for empty OTP
 */
static bool iwl_is_otp_empty(struct iwl_trans *trans)
{
	u16 next_link_addr = 0;
	__le16 link_value;
	bool is_empty = false;

	/* locate the beginning of OTP link list */
	if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
		if (!link_value) {
			IWL_ERR(trans, "OTP is empty\n");
			is_empty = true;
		}
	} else {
		IWL_ERR(trans, "Unable to read first block of OTP list.\n");
		is_empty = true;
	}

	return is_empty;
}


/*
 * iwl_find_otp_image: find EEPROM image in OTP
 *   finding the OTP block that contains the EEPROM image.
 *   the last valid block on the link list (the block _before_ the last block)
 *   is the block we should read and used to configure the device.
 *   If all the available OTP blocks are full, the last block will be the block
 *   we should read and used to configure the device.
 *   only perform this operation if shadow RAM is disabled
 */
static int iwl_find_otp_image(struct iwl_trans *trans,
					u16 *validblockaddr)
{
	u16 next_link_addr = 0, valid_addr;
	__le16 link_value = 0;
	int usedblocks = 0;

	/* set addressing mode to absolute to traverse the link list */
	iwl_set_otp_access(trans, IWL_OTP_ACCESS_ABSOLUTE);

	/* checking for empty OTP or error */
	if (iwl_is_otp_empty(trans))
		return -EINVAL;

	/*
	 * start traverse link list
	 * until reach the max number of OTP blocks
	 * different devices have different number of OTP blocks
	 */
	do {
		/* save current valid block address
		 * check for more block on the link list
		 */
		valid_addr = next_link_addr;
		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
		IWL_DEBUG_EEPROM(trans, "OTP blocks %d addr 0x%x\n",
			       usedblocks, next_link_addr);
		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
			return -EINVAL;
		if (!link_value) {
			/*
			 * reach the end of link list, return success and
			 * set address point to the starting address
			 * of the image
			 */
			*validblockaddr = valid_addr;
			/* skip first 2 bytes (link list pointer) */
			*validblockaddr += 2;
			return 0;
		}
		/* more in the link list, continue */
		usedblocks++;
	} while (usedblocks <= cfg(trans)->base_params->max_ll_items);

	/* OTP has no valid blocks */
	IWL_DEBUG_EEPROM(trans, "OTP has no valid blocks\n");
	return -EINVAL;
}

/******************************************************************************
 *
 * Tx Power related functions
 *
******************************************************************************/
/**
 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
 *     find the highest tx power from all chains for the channel
 */
static s8 iwl_get_max_txpower_avg(const struct iwl_cfg *cfg,
		struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
		int element, s8 *max_txpower_in_half_dbm)
{
	s8 max_txpower_avg = 0; /* (dBm) */

	/* Take the highest tx power from any valid chains */
	if ((cfg->valid_tx_ant & ANT_A) &&
	    (enhanced_txpower[element].chain_a_max > max_txpower_avg))
		max_txpower_avg = enhanced_txpower[element].chain_a_max;
	if ((cfg->valid_tx_ant & ANT_B) &&
	    (enhanced_txpower[element].chain_b_max > max_txpower_avg))
		max_txpower_avg = enhanced_txpower[element].chain_b_max;
	if ((cfg->valid_tx_ant & ANT_C) &&
	    (enhanced_txpower[element].chain_c_max > max_txpower_avg))
		max_txpower_avg = enhanced_txpower[element].chain_c_max;
	if (((cfg->valid_tx_ant == ANT_AB) |
	    (cfg->valid_tx_ant == ANT_BC) |
	    (cfg->valid_tx_ant == ANT_AC)) &&
	    (enhanced_txpower[element].mimo2_max > max_txpower_avg))
		max_txpower_avg =  enhanced_txpower[element].mimo2_max;
	if ((cfg->valid_tx_ant == ANT_ABC) &&
	    (enhanced_txpower[element].mimo3_max > max_txpower_avg))
		max_txpower_avg = enhanced_txpower[element].mimo3_max;

	/*
	 * max. tx power in EEPROM is in 1/2 dBm format
	 * convert from 1/2 dBm to dBm (round-up convert)
	 * but we also do not want to loss 1/2 dBm resolution which
	 * will impact performance
	 */
	*max_txpower_in_half_dbm = max_txpower_avg;
	return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
}

static void
iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
				    struct iwl_eeprom_enhanced_txpwr *txp,
				    s8 max_txpower_avg)
{
	int ch_idx;
	bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
	enum ieee80211_band band;

	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
		IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;

	for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
		struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];

		/* update matching channel or from common data only */
		if (txp->channel != 0 && ch_info->channel != txp->channel)
			continue;

		/* update matching band only */
		if (band != ch_info->band)
			continue;

		if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
			ch_info->max_power_avg = max_txpower_avg;
			ch_info->curr_txpow = max_txpower_avg;
			ch_info->scan_power = max_txpower_avg;
		}

		if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
			ch_info->ht40_max_power_avg = max_txpower_avg;
	}
}

#define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
#define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
#define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)

#define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
			    ? # x " " : "")

static void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
{
	struct iwl_shared *shrd = priv->shrd;
	struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
	int idx, entries;
	__le16 *txp_len;
	s8 max_txp_avg, max_txp_avg_halfdbm;

	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);

	/* the length is in 16-bit words, but we want entries */
	txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;

	txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);

	for (idx = 0; idx < entries; idx++) {
		txp = &txp_array[idx];
		/* skip invalid entries */
		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
			continue;

		IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
				 (txp->channel && (txp->flags &
					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
					"Common " : (txp->channel) ?
					"Channel" : "Common",
				 (txp->channel),
				 TXP_CHECK_AND_PRINT(VALID),
				 TXP_CHECK_AND_PRINT(BAND_52G),
				 TXP_CHECK_AND_PRINT(OFDM),
				 TXP_CHECK_AND_PRINT(40MHZ),
				 TXP_CHECK_AND_PRINT(HT_AP),
				 TXP_CHECK_AND_PRINT(RES1),
				 TXP_CHECK_AND_PRINT(RES2),
				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
				 txp->flags);
		IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
				 "chain_B: 0X%02x chain_C: 0X%02x\n",
				 txp->chain_a_max, txp->chain_b_max,
				 txp->chain_c_max);
		IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
				 "MIMO3: 0x%02x High 20_on_40: 0x%02x "
				 "Low 20_on_40: 0x%02x\n",
				 txp->mimo2_max, txp->mimo3_max,
				 ((txp->delta_20_in_40 & 0xf0) >> 4),
				 (txp->delta_20_in_40 & 0x0f));

		max_txp_avg = iwl_get_max_txpower_avg(cfg(priv), txp_array, idx,
						      &max_txp_avg_halfdbm);

		/*
		 * Update the user limit values values to the highest
		 * power supported by any channel
		 */
		if (max_txp_avg > priv->tx_power_user_lmt)
			priv->tx_power_user_lmt = max_txp_avg;
		if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
			priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;

		iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
	}
}

/**
 * iwl_eeprom_init - read EEPROM contents
 *
 * Load the EEPROM contents from adapter into shrd->eeprom
 *
 * NOTE:  This routine uses the non-debug IO access functions.
 */
int iwl_eeprom_init(struct iwl_trans *trans, u32 hw_rev)
{
	__le16 *e;
	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
	int sz;
	int ret;
	u16 addr;
	u16 validblockaddr = 0;
	u16 cache_addr = 0;

	trans->nvm_device_type = iwl_get_nvm_type(trans, hw_rev);
	if (trans->nvm_device_type == -ENOENT)
		return -ENOENT;
	/* allocate eeprom */
	sz = cfg(trans)->base_params->eeprom_size;
	IWL_DEBUG_EEPROM(trans, "NVM size = %d\n", sz);
	trans->shrd->eeprom = kzalloc(sz, GFP_KERNEL);
	if (!trans->shrd->eeprom) {
		ret = -ENOMEM;
		goto alloc_err;
	}
	e = (__le16 *)trans->shrd->eeprom;

	ret = iwl_eeprom_verify_signature(trans);
	if (ret < 0) {
		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
		ret = -ENOENT;
		goto err;
	}

	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
	ret = iwl_eeprom_acquire_semaphore(trans);
	if (ret < 0) {
		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
		ret = -ENOENT;
		goto err;
	}

	if (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP) {

		ret = iwl_init_otp_access(trans);
		if (ret) {
			IWL_ERR(trans, "Failed to initialize OTP access.\n");
			ret = -ENOENT;
			goto done;
		}
		iwl_write32(trans, CSR_EEPROM_GP,
			    iwl_read32(trans, CSR_EEPROM_GP) &
			    ~CSR_EEPROM_GP_IF_OWNER_MSK);

		iwl_set_bit(trans, CSR_OTP_GP_REG,
			     CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
			     CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
		/* traversing the linked list if no shadow ram supported */
		if (!cfg(trans)->base_params->shadow_ram_support) {
			if (iwl_find_otp_image(trans, &validblockaddr)) {
				ret = -ENOENT;
				goto done;
			}
		}
		for (addr = validblockaddr; addr < validblockaddr + sz;
		     addr += sizeof(u16)) {
			__le16 eeprom_data;

			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
			if (ret)
				goto done;
			e[cache_addr / 2] = eeprom_data;
			cache_addr += sizeof(u16);
		}
	} else {
		/* eeprom is an array of 16bit values */
		for (addr = 0; addr < sz; addr += sizeof(u16)) {
			u32 r;

			iwl_write32(trans, CSR_EEPROM_REG,
				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));

			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
						  CSR_EEPROM_REG_READ_VALID_MSK,
						  CSR_EEPROM_REG_READ_VALID_MSK,
						  IWL_EEPROM_ACCESS_TIMEOUT);
			if (ret < 0) {
				IWL_ERR(trans,
					"Time out reading EEPROM[%d]\n", addr);
				goto done;
			}
			r = iwl_read32(trans, CSR_EEPROM_REG);
			e[addr / 2] = cpu_to_le16(r >> 16);
		}
	}

	IWL_DEBUG_EEPROM(trans, "NVM Type: %s, version: 0x%x\n",
		       (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
		       ? "OTP" : "EEPROM",
		       iwl_eeprom_query16(trans->shrd, EEPROM_VERSION));

	ret = 0;
done:
	iwl_eeprom_release_semaphore(trans);

err:
	if (ret)
		iwl_eeprom_free(trans->shrd);
alloc_err:
	return ret;
}

void iwl_eeprom_free(struct iwl_shared *shrd)
{
	kfree(shrd->eeprom);
	shrd->eeprom = NULL;
}

static void iwl_init_band_reference(const struct iwl_priv *priv,
			int eep_band, int *eeprom_ch_count,
			const struct iwl_eeprom_channel **eeprom_ch_info,
			const u8 **eeprom_ch_index)
{
	struct iwl_shared *shrd = priv->shrd;
	u32 offset = cfg(priv)->lib->
			eeprom_ops.regulatory_bands[eep_band - 1];
	switch (eep_band) {
	case 1:		/* 2.4GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_1;
		break;
	case 2:		/* 4.9GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_2;
		break;
	case 3:		/* 5.2GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_3;
		break;
	case 4:		/* 5.5GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_4;
		break;
	case 5:		/* 5.7GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_5;
		break;
	case 6:		/* 2.4GHz ht40 channels */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_6;
		break;
	case 7:		/* 5 GHz ht40 channels */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(shrd, offset);
		*eeprom_ch_index = iwl_eeprom_band_7;
		break;
	default:
		BUG();
		return;
	}
}

#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
			    ? # x " " : "")
/**
 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
 *
 * Does not set up a command, or touch hardware.
 */
static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
			      enum ieee80211_band band, u16 channel,
			      const struct iwl_eeprom_channel *eeprom_ch,
			      u8 clear_ht40_extension_channel)
{
	struct iwl_channel_info *ch_info;

	ch_info = (struct iwl_channel_info *)
			iwl_get_channel_info(priv, band, channel);

	if (!is_channel_valid(ch_info))
		return -1;

	IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
			" Ad-Hoc %ssupported\n",
			ch_info->channel,
			is_channel_a_band(ch_info) ?
			"5.2" : "2.4",
			CHECK_AND_PRINT(IBSS),
			CHECK_AND_PRINT(ACTIVE),
			CHECK_AND_PRINT(RADAR),
			CHECK_AND_PRINT(WIDE),
			CHECK_AND_PRINT(DFS),
			eeprom_ch->flags,
			eeprom_ch->max_power_avg,
			((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
			 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
			"" : "not ");

	ch_info->ht40_eeprom = *eeprom_ch;
	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
	ch_info->ht40_flags = eeprom_ch->flags;
	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
		ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;

	return 0;
}

#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
			    ? # x " " : "")

/**
 * iwl_init_channel_map - Set up driver's info for all possible channels
 */
int iwl_init_channel_map(struct iwl_priv *priv)
{
	int eeprom_ch_count = 0;
	const u8 *eeprom_ch_index = NULL;
	const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
	int band, ch;
	struct iwl_channel_info *ch_info;

	if (priv->channel_count) {
		IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
		return 0;
	}

	IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");

	priv->channel_count =
	    ARRAY_SIZE(iwl_eeprom_band_1) +
	    ARRAY_SIZE(iwl_eeprom_band_2) +
	    ARRAY_SIZE(iwl_eeprom_band_3) +
	    ARRAY_SIZE(iwl_eeprom_band_4) +
	    ARRAY_SIZE(iwl_eeprom_band_5);

	IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
			priv->channel_count);

	priv->channel_info = kcalloc(priv->channel_count,
				     sizeof(struct iwl_channel_info),
				     GFP_KERNEL);
	if (!priv->channel_info) {
		IWL_ERR(priv, "Could not allocate channel_info\n");
		priv->channel_count = 0;
		return -ENOMEM;
	}

	ch_info = priv->channel_info;

	/* Loop through the 5 EEPROM bands adding them in order to the
	 * channel map we maintain (that contains additional information than
	 * what just in the EEPROM) */
	for (band = 1; band <= 5; band++) {

		iwl_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			ch_info->channel = eeprom_ch_index[ch];
			ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
			    IEEE80211_BAND_5GHZ;

			/* permanently store EEPROM's channel regulatory flags
			 *   and max power in channel info database. */
			ch_info->eeprom = eeprom_ch_info[ch];

			/* Copy the run-time flags so they are there even on
			 * invalid channels */
			ch_info->flags = eeprom_ch_info[ch].flags;
			/* First write that ht40 is not enabled, and then enable
			 * one by one */
			ch_info->ht40_extension_channel =
					IEEE80211_CHAN_NO_HT40;

			if (!(is_channel_valid(ch_info))) {
				IWL_DEBUG_EEPROM(priv,
					       "Ch. %d Flags %x [%sGHz] - "
					       "No traffic\n",
					       ch_info->channel,
					       ch_info->flags,
					       is_channel_a_band(ch_info) ?
					       "5.2" : "2.4");
				ch_info++;
				continue;
			}

			/* Initialize regulatory-based run-time data */
			ch_info->max_power_avg = ch_info->curr_txpow =
			    eeprom_ch_info[ch].max_power_avg;
			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
			ch_info->min_power = 0;

			IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
				       "%s%s%s%s%s%s(0x%02x %ddBm):"
				       " Ad-Hoc %ssupported\n",
				       ch_info->channel,
				       is_channel_a_band(ch_info) ?
				       "5.2" : "2.4",
				       CHECK_AND_PRINT_I(VALID),
				       CHECK_AND_PRINT_I(IBSS),
				       CHECK_AND_PRINT_I(ACTIVE),
				       CHECK_AND_PRINT_I(RADAR),
				       CHECK_AND_PRINT_I(WIDE),
				       CHECK_AND_PRINT_I(DFS),
				       eeprom_ch_info[ch].flags,
				       eeprom_ch_info[ch].max_power_avg,
				       ((eeprom_ch_info[ch].
					 flags & EEPROM_CHANNEL_IBSS)
					&& !(eeprom_ch_info[ch].
					     flags & EEPROM_CHANNEL_RADAR))
				       ? "" : "not ");

			ch_info++;
		}
	}

	/* Check if we do have HT40 channels */
	if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
	    EEPROM_REGULATORY_BAND_NO_HT40 &&
	    cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
	    EEPROM_REGULATORY_BAND_NO_HT40)
		return 0;

	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
	for (band = 6; band <= 7; band++) {
		enum ieee80211_band ieeeband;

		iwl_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
		ieeeband =
			(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			/* Set up driver's info for lower half */
			iwl_mod_ht40_chan_info(priv, ieeeband,
						eeprom_ch_index[ch],
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40PLUS);

			/* Set up driver's info for upper half */
			iwl_mod_ht40_chan_info(priv, ieeeband,
						eeprom_ch_index[ch] + 4,
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40MINUS);
		}
	}

	/* for newer device (6000 series and up)
	 * EEPROM contain enhanced tx power information
	 * driver need to process addition information
	 * to determine the max channel tx power limits
	 */
	if (cfg(priv)->lib->eeprom_ops.enhanced_txpower)
		iwl_eeprom_enhanced_txpower(priv);

	return 0;
}

/*
 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
 */
void iwl_free_channel_map(struct iwl_priv *priv)
{
	kfree(priv->channel_info);
	priv->channel_count = 0;
}

/**
 * iwl_get_channel_info - Find driver's private channel info
 *
 * Based on band and channel number.
 */
const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
					enum ieee80211_band band, u16 channel)
{
	int i;

	switch (band) {
	case IEEE80211_BAND_5GHZ:
		for (i = 14; i < priv->channel_count; i++) {
			if (priv->channel_info[i].channel == channel)
				return &priv->channel_info[i];
		}
		break;
	case IEEE80211_BAND_2GHZ:
		if (channel >= 1 && channel <= 14)
			return &priv->channel_info[channel - 1];
		break;
	default:
		BUG();
	}

	return NULL;
}

void iwl_rf_config(struct iwl_priv *priv)
{
	u16 radio_cfg;

	radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);

	/* write radio config values to register */
	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
		iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
			    EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
			    EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
			    EEPROM_RF_CFG_DASH_MSK(radio_cfg));
		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
			 EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
			 EEPROM_RF_CFG_STEP_MSK(radio_cfg),
			 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
	} else
		WARN_ON(1);

	/* set CSR_HW_CONFIG_REG for uCode use */
	iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
}