Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*
 * Compressed RAM block device
 *
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 * Project home: http://compcache.googlecode.com
 */

#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#ifdef CONFIG_ZRAM_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/lzo.h>
#include <linux/string.h>
#include <linux/vmalloc.h>

#include "zram_drv.h"

/* Globals */
static int zram_major;
struct zram *zram_devices;

/* Module params (documentation at end) */
unsigned int zram_num_devices;

static void zram_stat_inc(u32 *v)
{
	*v = *v + 1;
}

static void zram_stat_dec(u32 *v)
{
	*v = *v - 1;
}

static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
{
	spin_lock(&zram->stat64_lock);
	*v = *v + inc;
	spin_unlock(&zram->stat64_lock);
}

static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
{
	spin_lock(&zram->stat64_lock);
	*v = *v - dec;
	spin_unlock(&zram->stat64_lock);
}

static void zram_stat64_inc(struct zram *zram, u64 *v)
{
	zram_stat64_add(zram, v, 1);
}

static int zram_test_flag(struct zram *zram, u32 index,
			enum zram_pageflags flag)
{
	return zram->table[index].flags & BIT(flag);
}

static void zram_set_flag(struct zram *zram, u32 index,
			enum zram_pageflags flag)
{
	zram->table[index].flags |= BIT(flag);
}

static void zram_clear_flag(struct zram *zram, u32 index,
			enum zram_pageflags flag)
{
	zram->table[index].flags &= ~BIT(flag);
}

static int page_zero_filled(void *ptr)
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
		if (page[pos])
			return 0;
	}

	return 1;
}

static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
{
	if (!zram->disksize) {
		pr_info(
		"disk size not provided. You can use disksize_kb module "
		"param to specify size.\nUsing default: (%u%% of RAM).\n",
		default_disksize_perc_ram
		);
		zram->disksize = default_disksize_perc_ram *
					(totalram_bytes / 100);
	}

	if (zram->disksize > 2 * (totalram_bytes)) {
		pr_info(
		"There is little point creating a zram of greater than "
		"twice the size of memory since we expect a 2:1 compression "
		"ratio. Note that zram uses about 0.1%% of the size of "
		"the disk when not in use so a huge zram is "
		"wasteful.\n"
		"\tMemory Size: %zu kB\n"
		"\tSize you selected: %llu kB\n"
		"Continuing anyway ...\n",
		totalram_bytes >> 10, zram->disksize
		);
	}

	zram->disksize &= PAGE_MASK;
}

static void zram_free_page(struct zram *zram, size_t index)
{
	u32 clen;
	void *obj;

	struct page *page = zram->table[index].page;
	u32 offset = zram->table[index].offset;

	if (unlikely(!page)) {
		/*
		 * No memory is allocated for zero filled pages.
		 * Simply clear zero page flag.
		 */
		if (zram_test_flag(zram, index, ZRAM_ZERO)) {
			zram_clear_flag(zram, index, ZRAM_ZERO);
			zram_stat_dec(&zram->stats.pages_zero);
		}
		return;
	}

	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
		clen = PAGE_SIZE;
		__free_page(page);
		zram_clear_flag(zram, index, ZRAM_UNCOMPRESSED);
		zram_stat_dec(&zram->stats.pages_expand);
		goto out;
	}

	obj = kmap_atomic(page, KM_USER0) + offset;
	clen = xv_get_object_size(obj) - sizeof(struct zobj_header);
	kunmap_atomic(obj, KM_USER0);

	xv_free(zram->mem_pool, page, offset);
	if (clen <= PAGE_SIZE / 2)
		zram_stat_dec(&zram->stats.good_compress);

out:
	zram_stat64_sub(zram, &zram->stats.compr_size, clen);
	zram_stat_dec(&zram->stats.pages_stored);

	zram->table[index].page = NULL;
	zram->table[index].offset = 0;
}

static void handle_zero_page(struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page, KM_USER0);
	memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
	kunmap_atomic(user_mem, KM_USER0);

	flush_dcache_page(page);
}

static void handle_uncompressed_page(struct zram *zram, struct bio_vec *bvec,
				     u32 index, int offset)
{
	struct page *page = bvec->bv_page;
	unsigned char *user_mem, *cmem;

	user_mem = kmap_atomic(page, KM_USER0);
	cmem = kmap_atomic(zram->table[index].page, KM_USER1);

	memcpy(user_mem + bvec->bv_offset, cmem + offset, bvec->bv_len);
	kunmap_atomic(cmem, KM_USER1);
	kunmap_atomic(user_mem, KM_USER0);

	flush_dcache_page(page);
}

static inline int is_partial_io(struct bio_vec *bvec)
{
	return bvec->bv_len != PAGE_SIZE;
}

static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
			  u32 index, int offset, struct bio *bio)
{
	int ret;
	size_t clen;
	struct page *page;
	struct zobj_header *zheader;
	unsigned char *user_mem, *cmem, *uncmem = NULL;

	page = bvec->bv_page;

	if (zram_test_flag(zram, index, ZRAM_ZERO)) {
		handle_zero_page(bvec);
		return 0;
	}

	/* Requested page is not present in compressed area */
	if (unlikely(!zram->table[index].page)) {
		pr_debug("Read before write: sector=%lu, size=%u",
			 (ulong)(bio->bi_sector), bio->bi_size);
		handle_zero_page(bvec);
		return 0;
	}

	/* Page is stored uncompressed since it's incompressible */
	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
		handle_uncompressed_page(zram, bvec, index, offset);
		return 0;
	}

	if (is_partial_io(bvec)) {
		/* Use  a temporary buffer to decompress the page */
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
		if (!uncmem) {
			pr_info("Error allocating temp memory!\n");
			return -ENOMEM;
		}
	}

	user_mem = kmap_atomic(page, KM_USER0);
	if (!is_partial_io(bvec))
		uncmem = user_mem;
	clen = PAGE_SIZE;

	cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
		zram->table[index].offset;

	ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
				    xv_get_object_size(cmem) - sizeof(*zheader),
				    uncmem, &clen);

	if (is_partial_io(bvec)) {
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
		       bvec->bv_len);
		kfree(uncmem);
	}

	kunmap_atomic(cmem, KM_USER1);
	kunmap_atomic(user_mem, KM_USER0);

	/* Should NEVER happen. Return bio error if it does. */
	if (unlikely(ret != LZO_E_OK)) {
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		zram_stat64_inc(zram, &zram->stats.failed_reads);
		return ret;
	}

	flush_dcache_page(page);

	return 0;
}

static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
{
	int ret;
	size_t clen = PAGE_SIZE;
	struct zobj_header *zheader;
	unsigned char *cmem;

	if (zram_test_flag(zram, index, ZRAM_ZERO) ||
	    !zram->table[index].page) {
		memset(mem, 0, PAGE_SIZE);
		return 0;
	}

	cmem = kmap_atomic(zram->table[index].page, KM_USER0) +
		zram->table[index].offset;

	/* Page is stored uncompressed since it's incompressible */
	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
		memcpy(mem, cmem, PAGE_SIZE);
		kunmap_atomic(cmem, KM_USER0);
		return 0;
	}

	ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
				    xv_get_object_size(cmem) - sizeof(*zheader),
				    mem, &clen);
	kunmap_atomic(cmem, KM_USER0);

	/* Should NEVER happen. Return bio error if it does. */
	if (unlikely(ret != LZO_E_OK)) {
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		zram_stat64_inc(zram, &zram->stats.failed_reads);
		return ret;
	}

	return 0;
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
{
	int ret;
	u32 store_offset;
	size_t clen;
	struct zobj_header *zheader;
	struct page *page, *page_store;
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;

	page = bvec->bv_page;
	src = zram->compress_buffer;

	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
		if (!uncmem) {
			pr_info("Error allocating temp memory!\n");
			ret = -ENOMEM;
			goto out;
		}
		ret = zram_read_before_write(zram, uncmem, index);
		if (ret) {
			kfree(uncmem);
			goto out;
		}
	}

	/*
	 * System overwrites unused sectors. Free memory associated
	 * with this sector now.
	 */
	if (zram->table[index].page ||
	    zram_test_flag(zram, index, ZRAM_ZERO))
		zram_free_page(zram, index);

	user_mem = kmap_atomic(page, KM_USER0);

	if (is_partial_io(bvec))
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
	else
		uncmem = user_mem;

	if (page_zero_filled(uncmem)) {
		kunmap_atomic(user_mem, KM_USER0);
		if (is_partial_io(bvec))
			kfree(uncmem);
		zram_stat_inc(&zram->stats.pages_zero);
		zram_set_flag(zram, index, ZRAM_ZERO);
		ret = 0;
		goto out;
	}

	ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
			       zram->compress_workmem);

	kunmap_atomic(user_mem, KM_USER0);
	if (is_partial_io(bvec))
			kfree(uncmem);

	if (unlikely(ret != LZO_E_OK)) {
		pr_err("Compression failed! err=%d\n", ret);
		goto out;
	}

	/*
	 * Page is incompressible. Store it as-is (uncompressed)
	 * since we do not want to return too many disk write
	 * errors which has side effect of hanging the system.
	 */
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
		page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
		if (unlikely(!page_store)) {
			pr_info("Error allocating memory for "
				"incompressible page: %u\n", index);
			ret = -ENOMEM;
			goto out;
		}

		store_offset = 0;
		zram_set_flag(zram, index, ZRAM_UNCOMPRESSED);
		zram_stat_inc(&zram->stats.pages_expand);
		zram->table[index].page = page_store;
		src = kmap_atomic(page, KM_USER0);
		goto memstore;
	}

	if (xv_malloc(zram->mem_pool, clen + sizeof(*zheader),
		      &zram->table[index].page, &store_offset,
		      GFP_NOIO | __GFP_HIGHMEM)) {
		pr_info("Error allocating memory for compressed "
			"page: %u, size=%zu\n", index, clen);
		ret = -ENOMEM;
		goto out;
	}

memstore:
	zram->table[index].offset = store_offset;

	cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
		zram->table[index].offset;

#if 0
	/* Back-reference needed for memory defragmentation */
	if (!zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)) {
		zheader = (struct zobj_header *)cmem;
		zheader->table_idx = index;
		cmem += sizeof(*zheader);
	}
#endif

	memcpy(cmem, src, clen);

	kunmap_atomic(cmem, KM_USER1);
	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
		kunmap_atomic(src, KM_USER0);

	/* Update stats */
	zram_stat64_add(zram, &zram->stats.compr_size, clen);
	zram_stat_inc(&zram->stats.pages_stored);
	if (clen <= PAGE_SIZE / 2)
		zram_stat_inc(&zram->stats.good_compress);

	return 0;

out:
	if (ret)
		zram_stat64_inc(zram, &zram->stats.failed_writes);
	return ret;
}

static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
			int offset, struct bio *bio, int rw)
{
	int ret;

	if (rw == READ) {
		down_read(&zram->lock);
		ret = zram_bvec_read(zram, bvec, index, offset, bio);
		up_read(&zram->lock);
	} else {
		down_write(&zram->lock);
		ret = zram_bvec_write(zram, bvec, index, offset);
		up_write(&zram->lock);
	}

	return ret;
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
{
	int i, offset;
	u32 index;
	struct bio_vec *bvec;

	switch (rw) {
	case READ:
		zram_stat64_inc(zram, &zram->stats.num_reads);
		break;
	case WRITE:
		zram_stat64_inc(zram, &zram->stats.num_writes);
		break;
	}

	index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;

	bio_for_each_segment(bvec, bio, i) {
		int max_transfer_size = PAGE_SIZE - offset;

		if (bvec->bv_len > max_transfer_size) {
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

			bv.bv_page = bvec->bv_page;
			bv.bv_len = max_transfer_size;
			bv.bv_offset = bvec->bv_offset;

			if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
				goto out;

			bv.bv_len = bvec->bv_len - max_transfer_size;
			bv.bv_offset += max_transfer_size;
			if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
				goto out;
		} else
			if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
			    < 0)
				goto out;

		update_position(&index, &offset, bvec);
	}

	set_bit(BIO_UPTODATE, &bio->bi_flags);
	bio_endio(bio, 0);
	return;

out:
	bio_io_error(bio);
}

/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
static inline int valid_io_request(struct zram *zram, struct bio *bio)
{
	u64 start, end, bound;
	
	/* unaligned request */
	if (unlikely(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
		return 0;
	if (unlikely(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
		return 0;

	start = bio->bi_sector;
	end = start + (bio->bi_size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
		return 0;

	/* I/O request is valid */
	return 1;
}

/*
 * Handler function for all zram I/O requests.
 */
static void zram_make_request(struct request_queue *queue, struct bio *bio)
{
	struct zram *zram = queue->queuedata;

	if (unlikely(!zram->init_done) && zram_init_device(zram))
		goto error;

	down_read(&zram->init_lock);
	if (unlikely(!zram->init_done))
		goto error_unlock;

	if (!valid_io_request(zram, bio)) {
		zram_stat64_inc(zram, &zram->stats.invalid_io);
		goto error_unlock;
	}

	__zram_make_request(zram, bio, bio_data_dir(bio));
	up_read(&zram->init_lock);

	return;

error_unlock:
	up_read(&zram->init_lock);
error:
	bio_io_error(bio);
}

void __zram_reset_device(struct zram *zram)
{
	size_t index;

	zram->init_done = 0;

	/* Free various per-device buffers */
	kfree(zram->compress_workmem);
	free_pages((unsigned long)zram->compress_buffer, 1);

	zram->compress_workmem = NULL;
	zram->compress_buffer = NULL;

	/* Free all pages that are still in this zram device */
	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
		struct page *page;
		u16 offset;

		page = zram->table[index].page;
		offset = zram->table[index].offset;

		if (!page)
			continue;

		if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
			__free_page(page);
		else
			xv_free(zram->mem_pool, page, offset);
	}

	vfree(zram->table);
	zram->table = NULL;

	xv_destroy_pool(zram->mem_pool);
	zram->mem_pool = NULL;

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));

	zram->disksize = 0;
}

void zram_reset_device(struct zram *zram)
{
	down_write(&zram->init_lock);
	__zram_reset_device(zram);
	up_write(&zram->init_lock);
}

int zram_init_device(struct zram *zram)
{
	int ret;
	size_t num_pages;

	down_write(&zram->init_lock);

	if (zram->init_done) {
		up_write(&zram->init_lock);
		return 0;
	}

	zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);

	zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!zram->compress_workmem) {
		pr_err("Error allocating compressor working memory!\n");
		ret = -ENOMEM;
		goto fail_no_table;
	}

	zram->compress_buffer = (void *)__get_free_pages(__GFP_ZERO, 1);
	if (!zram->compress_buffer) {
		pr_err("Error allocating compressor buffer space\n");
		ret = -ENOMEM;
		goto fail_no_table;
	}

	num_pages = zram->disksize >> PAGE_SHIFT;
	zram->table = vzalloc(num_pages * sizeof(*zram->table));
	if (!zram->table) {
		pr_err("Error allocating zram address table\n");
		ret = -ENOMEM;
		goto fail_no_table;
	}

	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);

	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);

	zram->mem_pool = xv_create_pool();
	if (!zram->mem_pool) {
		pr_err("Error creating memory pool\n");
		ret = -ENOMEM;
		goto fail;
	}

	zram->init_done = 1;
	up_write(&zram->init_lock);

	pr_debug("Initialization done!\n");
	return 0;

fail_no_table:
	/* To prevent accessing table entries during cleanup */
	zram->disksize = 0;
fail:
	__zram_reset_device(zram);
	up_write(&zram->init_lock);
	pr_err("Initialization failed: err=%d\n", ret);
	return ret;
}

static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
{
	struct zram *zram;

	zram = bdev->bd_disk->private_data;
	zram_free_page(zram, index);
	zram_stat64_inc(zram, &zram->stats.notify_free);
}

static const struct block_device_operations zram_devops = {
	.swap_slot_free_notify = zram_slot_free_notify,
	.owner = THIS_MODULE
};

static int create_device(struct zram *zram, int device_id)
{
	int ret = -ENOMEM;

	init_rwsem(&zram->lock);
	init_rwsem(&zram->init_lock);
	spin_lock_init(&zram->stat64_lock);

	zram->queue = blk_alloc_queue(GFP_KERNEL);
	if (!zram->queue) {
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
		goto out;
	}

	blk_queue_make_request(zram->queue, zram_make_request);
	zram->queue->queuedata = zram;

	 /* gendisk structure */
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
		pr_warning("Error allocating disk structure for device %d\n",
			device_id);
		goto out_free_queue;
	}

	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
	zram->disk->queue = zram->queue;
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);

	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
	set_capacity(zram->disk, 0);

	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);

	add_disk(zram->disk);

	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
		pr_warning("Error creating sysfs group");
		goto out_free_disk;
	}

	zram->init_done = 0;
	return 0;

out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
	blk_cleanup_queue(zram->queue);
out:
	return ret;
}

static void destroy_device(struct zram *zram)
{
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);

	if (zram->disk) {
		del_gendisk(zram->disk);
		put_disk(zram->disk);
	}

	if (zram->queue)
		blk_cleanup_queue(zram->queue);
}

static int __init zram_init(void)
{
	int ret, dev_id;

	if (zram_num_devices > max_num_devices) {
		pr_warning("Invalid value for num_devices: %u\n",
				zram_num_devices);
		ret = -EINVAL;
		goto out;
	}

	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
		pr_warning("Unable to get major number\n");
		ret = -EBUSY;
		goto out;
	}

	if (!zram_num_devices) {
		pr_info("num_devices not specified. Using default: 1\n");
		zram_num_devices = 1;
	}

	/* Allocate the device array and initialize each one */
	pr_info("Creating %u devices ...\n", zram_num_devices);
	zram_devices = kzalloc(zram_num_devices * sizeof(struct zram), GFP_KERNEL);
	if (!zram_devices) {
		ret = -ENOMEM;
		goto unregister;
	}

	for (dev_id = 0; dev_id < zram_num_devices; dev_id++) {
		ret = create_device(&zram_devices[dev_id], dev_id);
		if (ret)
			goto free_devices;
	}

	return 0;

free_devices:
	while (dev_id)
		destroy_device(&zram_devices[--dev_id]);
	kfree(zram_devices);
unregister:
	unregister_blkdev(zram_major, "zram");
out:
	return ret;
}

static void __exit zram_exit(void)
{
	int i;
	struct zram *zram;

	for (i = 0; i < zram_num_devices; i++) {
		zram = &zram_devices[i];

		get_disk(zram->disk);
		destroy_device(zram);
		if (zram->init_done)
			zram_reset_device(zram);
		put_disk(zram->disk);
	}

	unregister_blkdev(zram_major, "zram");

	kfree(zram_devices);
	pr_debug("Cleanup done!\n");
}

module_param(zram_num_devices, uint, 0);
MODULE_PARM_DESC(zram_num_devices, "Number of zram devices");

module_init(zram_init);
module_exit(zram_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");