Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/*
 * Copyright (C) 1995  Linus Torvalds
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/efi.h>
#include <linux/memory_hotplug.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/homecache.h>
#include <hv/hypervisor.h>
#include <arch/chip.h>

#include "migrate.h"

#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))

#ifndef __tilegx__
unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
EXPORT_SYMBOL(VMALLOC_RESERVE);
#endif

/* Create an L2 page table */
static pte_t * __init alloc_pte(void)
{
	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
}

/*
 * L2 page tables per controller.  We allocate these all at once from
 * the bootmem allocator and store them here.  This saves on kernel L2
 * page table memory, compared to allocating a full 64K page per L2
 * page table, and also means that in cases where we use huge pages,
 * we are guaranteed to later be able to shatter those huge pages and
 * switch to using these page tables instead, without requiring
 * further allocation.  Each l2_ptes[] entry points to the first page
 * table for the first hugepage-size piece of memory on the
 * controller; other page tables are just indexed directly, i.e. the
 * L2 page tables are contiguous in memory for each controller.
 */
static pte_t *l2_ptes[MAX_NUMNODES];
static int num_l2_ptes[MAX_NUMNODES];

static void init_prealloc_ptes(int node, int pages)
{
	BUG_ON(pages & (HV_L2_ENTRIES-1));
	if (pages) {
		num_l2_ptes[node] = pages;
		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
						HV_PAGE_TABLE_ALIGN, 0);
	}
}

pte_t *get_prealloc_pte(unsigned long pfn)
{
	int node = pfn_to_nid(pfn);
	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
	BUG_ON(node >= MAX_NUMNODES);
	BUG_ON(pfn >= num_l2_ptes[node]);
	return &l2_ptes[node][pfn];
}

/*
 * What caching do we expect pages from the heap to have when
 * they are allocated during bootup?  (Once we've installed the
 * "real" swapper_pg_dir.)
 */
static int initial_heap_home(void)
{
#if CHIP_HAS_CBOX_HOME_MAP()
	if (hash_default)
		return PAGE_HOME_HASH;
#endif
	return smp_processor_id();
}

/*
 * Place a pointer to an L2 page table in a middle page
 * directory entry.
 */
static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
{
	phys_addr_t pa = __pa(page_table);
	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
	pteval = pte_set_home(pteval, initial_heap_home());
	*(pte_t *)pmd = pteval;
	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
		BUG();
}

#ifdef __tilegx__

#if HV_L1_SIZE != HV_L2_SIZE
# error Rework assumption that L1 and L2 page tables are same size.
#endif

/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
static inline pmd_t *alloc_pmd(void)
{
	return (pmd_t *)alloc_pte();
}

static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
{
	assign_pte((pmd_t *)pud, (pte_t *)pmd);
}

#endif /* __tilegx__ */

/* Replace the given pmd with a full PTE table. */
void __init shatter_pmd(pmd_t *pmd)
{
	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
	assign_pte(pmd, pte);
}

#ifdef CONFIG_HIGHMEM
/*
 * This function initializes a certain range of kernel virtual memory
 * with new bootmem page tables, everywhere page tables are missing in
 * the given range.
 */

/*
 * NOTE: The pagetables are allocated contiguous on the physical space
 * so we can cache the place of the first one and move around without
 * checking the pgd every time.
 */
static void __init page_table_range_init(unsigned long start,
					 unsigned long end, pgd_t *pgd_base)
{
	pgd_t *pgd;
	int pgd_idx;
	unsigned long vaddr;

	vaddr = start;
	pgd_idx = pgd_index(vaddr);
	pgd = pgd_base + pgd_idx;

	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
		if (pmd_none(*pmd))
			assign_pte(pmd, alloc_pte());
		vaddr += PMD_SIZE;
	}
}
#endif /* CONFIG_HIGHMEM */


#if CHIP_HAS_CBOX_HOME_MAP()

static int __initdata ktext_hash = 1;  /* .text pages */
static int __initdata kdata_hash = 1;  /* .data and .bss pages */
int __write_once hash_default = 1;     /* kernel allocator pages */
EXPORT_SYMBOL(hash_default);
int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
#endif /* CHIP_HAS_CBOX_HOME_MAP */

/*
 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 * is available, this is only relevant if kcache_hash sets up the
 * .data and .bss to be page-homed, and we don't want the default mode
 * of using the full set of kernel cpus for the striping.
 */
static __initdata struct cpumask kdata_mask;
static __initdata int kdata_arg_seen;

int __write_once kdata_huge;       /* if no homecaching, small pages */


/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
{
	prot = pte_set_home(prot, home);
#if CHIP_HAS_CBOX_HOME_MAP()
	if (home == PAGE_HOME_IMMUTABLE) {
		if (ktext_hash)
			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
		else
			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
	}
#endif
	return prot;
}

/*
 * For a given kernel data VA, how should it be cached?
 * We return the complete pgprot_t with caching bits set.
 */
static pgprot_t __init init_pgprot(ulong address)
{
	int cpu;
	unsigned long page;
	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };

#if CHIP_HAS_CBOX_HOME_MAP()
	/* For kdata=huge, everything is just hash-for-home. */
	if (kdata_huge)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif

	/* We map the aliased pages of permanent text inaccessible. */
	if (address < (ulong) _sinittext - CODE_DELTA)
		return PAGE_NONE;

	/*
	 * We map read-only data non-coherent for performance.  We could
	 * use neighborhood caching on TILE64, but it's not clear it's a win.
	 */
	if ((address >= (ulong) __start_rodata &&
	     address < (ulong) __end_rodata) ||
	    address == (ulong) empty_zero_page) {
		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
	}

	/* As a performance optimization, keep the boot init stack here. */
	if (address >= (ulong)&init_thread_union &&
	    address < (ulong)&init_thread_union + THREAD_SIZE)
		return construct_pgprot(PAGE_KERNEL, smp_processor_id());

#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
	/* Force the atomic_locks[] array page to be hash-for-home. */
	if (address == (ulong) atomic_locks)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif
#endif

	/*
	 * Everything else that isn't data or bss is heap, so mark it
	 * with the initial heap home (hash-for-home, or this cpu).  This
	 * includes any addresses after the loaded image and any address before
	 * _einitdata, since we already captured the case of text before
	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
	 *
	 * All the LOWMEM pages that we mark this way will get their
	 * struct page homecache properly marked later, in set_page_homes().
	 * The HIGHMEM pages we leave with a default zero for their
	 * homes, but with a zero free_time we don't have to actually
	 * do a flush action the first time we use them, either.
	 */
	if (address >= (ulong) _end || address < (ulong) _einitdata)
		return construct_pgprot(PAGE_KERNEL, initial_heap_home());

#if CHIP_HAS_CBOX_HOME_MAP()
	/* Use hash-for-home if requested for data/bss. */
	if (kdata_hash)
		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
#endif

	/*
	 * Make the w1data homed like heap to start with, to avoid
	 * making it part of the page-striped data area when we're just
	 * going to convert it to read-only soon anyway.
	 */
	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
		return construct_pgprot(PAGE_KERNEL, initial_heap_home());

	/*
	 * Otherwise we just hand out consecutive cpus.  To avoid
	 * requiring this function to hold state, we just walk forward from
	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
	 * the requested address, while walking cpu home around kdata_mask.
	 * This is typically no more than a dozen or so iterations.
	 */
	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
	BUG_ON(address < page || address >= (ulong)_end);
	cpu = cpumask_first(&kdata_mask);
	for (; page < address; page += PAGE_SIZE) {
		if (page >= (ulong)&init_thread_union &&
		    page < (ulong)&init_thread_union + THREAD_SIZE)
			continue;
		if (page == (ulong)empty_zero_page)
			continue;
#ifndef __tilegx__
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
		if (page == (ulong)atomic_locks)
			continue;
#endif
#endif
		cpu = cpumask_next(cpu, &kdata_mask);
		if (cpu == NR_CPUS)
			cpu = cpumask_first(&kdata_mask);
	}
	return construct_pgprot(PAGE_KERNEL, cpu);
}

/*
 * This function sets up how we cache the kernel text.  If we have
 * hash-for-home support, normally that is used instead (see the
 * kcache_hash boot flag for more information).  But if we end up
 * using a page-based caching technique, this option sets up the
 * details of that.  In addition, the "ktext=nocache" option may
 * always be used to disable local caching of text pages, if desired.
 */

static int __initdata ktext_arg_seen;
static int __initdata ktext_small;
static int __initdata ktext_local;
static int __initdata ktext_all;
static int __initdata ktext_nondataplane;
static int __initdata ktext_nocache;
static struct cpumask __initdata ktext_mask;

static int __init setup_ktext(char *str)
{
	if (str == NULL)
		return -EINVAL;

	/* If you have a leading "nocache", turn off ktext caching */
	if (strncmp(str, "nocache", 7) == 0) {
		ktext_nocache = 1;
		pr_info("ktext: disabling local caching of kernel text\n");
		str += 7;
		if (*str == ',')
			++str;
		if (*str == '\0')
			return 0;
	}

	ktext_arg_seen = 1;

	/* Default setting on Tile64: use a huge page */
	if (strcmp(str, "huge") == 0)
		pr_info("ktext: using one huge locally cached page\n");

	/* Pay TLB cost but get no cache benefit: cache small pages locally */
	else if (strcmp(str, "local") == 0) {
		ktext_small = 1;
		ktext_local = 1;
		pr_info("ktext: using small pages with local caching\n");
	}

	/* Neighborhood cache ktext pages on all cpus. */
	else if (strcmp(str, "all") == 0) {
		ktext_small = 1;
		ktext_all = 1;
		pr_info("ktext: using maximal caching neighborhood\n");
	}


	/* Neighborhood ktext pages on specified mask */
	else if (cpulist_parse(str, &ktext_mask) == 0) {
		char buf[NR_CPUS * 5];
		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
		if (cpumask_weight(&ktext_mask) > 1) {
			ktext_small = 1;
			pr_info("ktext: using caching neighborhood %s "
			       "with small pages\n", buf);
		} else {
			pr_info("ktext: caching on cpu %s with one huge page\n",
			       buf);
		}
	}

	else if (*str)
		return -EINVAL;

	return 0;
}

early_param("ktext", setup_ktext);


static inline pgprot_t ktext_set_nocache(pgprot_t prot)
{
	if (!ktext_nocache)
		prot = hv_pte_set_nc(prot);
#if CHIP_HAS_NC_AND_NOALLOC_BITS()
	else
		prot = hv_pte_set_no_alloc_l2(prot);
#endif
	return prot;
}

#ifndef __tilegx__
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
}
#else
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
	if (pud_none(*pud))
		assign_pmd(pud, alloc_pmd());
	return pmd_offset(pud, va);
}
#endif

/* Temporary page table we use for staging. */
static pgd_t pgtables[PTRS_PER_PGD]
 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));

/*
 * This maps the physical memory to kernel virtual address space, a total
 * of max_low_pfn pages, by creating page tables starting from address
 * PAGE_OFFSET.
 *
 * This routine transitions us from using a set of compiled-in large
 * pages to using some more precise caching, including removing access
 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 * marking read-only data as locally cacheable, striping the remaining
 * .data and .bss across all the available tiles, and removing access
 * to pages above the top of RAM (thus ensuring a page fault from a bad
 * virtual address rather than a hypervisor shoot down for accessing
 * memory outside the assigned limits).
 */
static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
{
	unsigned long address, pfn;
	pmd_t *pmd;
	pte_t *pte;
	int pte_ofs;
	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
	struct cpumask kstripe_mask;
	int rc, i;

#if CHIP_HAS_CBOX_HOME_MAP()
	if (ktext_arg_seen && ktext_hash) {
		pr_warning("warning: \"ktext\" boot argument ignored"
			   " if \"kcache_hash\" sets up text hash-for-home\n");
		ktext_small = 0;
	}

	if (kdata_arg_seen && kdata_hash) {
		pr_warning("warning: \"kdata\" boot argument ignored"
			   " if \"kcache_hash\" sets up data hash-for-home\n");
	}

	if (kdata_huge && !hash_default) {
		pr_warning("warning: disabling \"kdata=huge\"; requires"
			  " kcache_hash=all or =allbutstack\n");
		kdata_huge = 0;
	}
#endif

	/*
	 * Set up a mask for cpus to use for kernel striping.
	 * This is normally all cpus, but minus dataplane cpus if any.
	 * If the dataplane covers the whole chip, we stripe over
	 * the whole chip too.
	 */
	cpumask_copy(&kstripe_mask, cpu_possible_mask);
	if (!kdata_arg_seen)
		kdata_mask = kstripe_mask;

	/* Allocate and fill in L2 page tables */
	for (i = 0; i < MAX_NUMNODES; ++i) {
#ifdef CONFIG_HIGHMEM
		unsigned long end_pfn = node_lowmem_end_pfn[i];
#else
		unsigned long end_pfn = node_end_pfn[i];
#endif
		unsigned long end_huge_pfn = 0;

		/* Pre-shatter the last huge page to allow per-cpu pages. */
		if (kdata_huge)
			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);

		pfn = node_start_pfn[i];

		/* Allocate enough memory to hold L2 page tables for node. */
		init_prealloc_ptes(i, end_pfn - pfn);

		address = (unsigned long) pfn_to_kaddr(pfn);
		while (pfn < end_pfn) {
			BUG_ON(address & (HPAGE_SIZE-1));
			pmd = get_pmd(pgtables, address);
			pte = get_prealloc_pte(pfn);
			if (pfn < end_huge_pfn) {
				pgprot_t prot = init_pgprot(address);
				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
				     pfn++, pte_ofs++, address += PAGE_SIZE)
					pte[pte_ofs] = pfn_pte(pfn, prot);
			} else {
				if (kdata_huge)
					printk(KERN_DEBUG "pre-shattered huge"
					       " page at %#lx\n", address);
				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
				     pfn++, pte_ofs++, address += PAGE_SIZE) {
					pgprot_t prot = init_pgprot(address);
					pte[pte_ofs] = pfn_pte(pfn, prot);
				}
				assign_pte(pmd, pte);
			}
		}
	}

	/*
	 * Set or check ktext_map now that we have cpu_possible_mask
	 * and kstripe_mask to work with.
	 */
	if (ktext_all)
		cpumask_copy(&ktext_mask, cpu_possible_mask);
	else if (ktext_nondataplane)
		ktext_mask = kstripe_mask;
	else if (!cpumask_empty(&ktext_mask)) {
		/* Sanity-check any mask that was requested */
		struct cpumask bad;
		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
		if (!cpumask_empty(&bad)) {
			char buf[NR_CPUS * 5];
			cpulist_scnprintf(buf, sizeof(buf), &bad);
			pr_info("ktext: not using unavailable cpus %s\n", buf);
		}
		if (cpumask_empty(&ktext_mask)) {
			pr_warning("ktext: no valid cpus; caching on %d.\n",
				   smp_processor_id());
			cpumask_copy(&ktext_mask,
				     cpumask_of(smp_processor_id()));
		}
	}

	address = MEM_SV_INTRPT;
	pmd = get_pmd(pgtables, address);
	if (ktext_small) {
		/* Allocate an L2 PTE for the kernel text */
		int cpu = 0;
		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
						 PAGE_HOME_IMMUTABLE);

		if (ktext_local) {
			if (ktext_nocache)
				prot = hv_pte_set_mode(prot,
						       HV_PTE_MODE_UNCACHED);
			else
				prot = hv_pte_set_mode(prot,
						       HV_PTE_MODE_CACHE_NO_L3);
		} else {
			prot = hv_pte_set_mode(prot,
					       HV_PTE_MODE_CACHE_TILE_L3);
			cpu = cpumask_first(&ktext_mask);

			prot = ktext_set_nocache(prot);
		}

		BUG_ON(address != (unsigned long)_stext);
		pfn = 0;  /* code starts at PA 0 */
		pte = alloc_pte();
		for (pte_ofs = 0; address < (unsigned long)_einittext;
		     pfn++, pte_ofs++, address += PAGE_SIZE) {
			if (!ktext_local) {
				prot = set_remote_cache_cpu(prot, cpu);
				cpu = cpumask_next(cpu, &ktext_mask);
				if (cpu == NR_CPUS)
					cpu = cpumask_first(&ktext_mask);
			}
			pte[pte_ofs] = pfn_pte(pfn, prot);
		}
		assign_pte(pmd, pte);
	} else {
		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
		pteval = pte_mkhuge(pteval);
#if CHIP_HAS_CBOX_HOME_MAP()
		if (ktext_hash) {
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_HASH_L3);
			pteval = ktext_set_nocache(pteval);
		} else
#endif /* CHIP_HAS_CBOX_HOME_MAP() */
		if (cpumask_weight(&ktext_mask) == 1) {
			pteval = set_remote_cache_cpu(pteval,
					      cpumask_first(&ktext_mask));
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_TILE_L3);
			pteval = ktext_set_nocache(pteval);
		} else if (ktext_nocache)
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_UNCACHED);
		else
			pteval = hv_pte_set_mode(pteval,
						 HV_PTE_MODE_CACHE_NO_L3);
		*(pte_t *)pmd = pteval;
	}

	/* Set swapper_pgprot here so it is flushed to memory right away. */
	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);

	/*
	 * Since we may be changing the caching of the stack and page
	 * table itself, we invoke an assembly helper to do the
	 * following steps:
	 *
	 *  - flush the cache so we start with an empty slate
	 *  - install pgtables[] as the real page table
	 *  - flush the TLB so the new page table takes effect
	 */
	rc = flush_and_install_context(__pa(pgtables),
				       init_pgprot((unsigned long)pgtables),
				       __get_cpu_var(current_asid),
				       cpumask_bits(my_cpu_mask));
	BUG_ON(rc != 0);

	/* Copy the page table back to the normal swapper_pg_dir. */
	memcpy(pgd_base, pgtables, sizeof(pgtables));
	__install_page_table(pgd_base, __get_cpu_var(current_asid),
			     swapper_pgprot);

	/*
	 * We just read swapper_pgprot and thus brought it into the cache,
	 * with its new home & caching mode.  When we start the other CPUs,
	 * they're going to reference swapper_pgprot via their initial fake
	 * VA-is-PA mappings, which cache everything locally.  At that
	 * time, if it's in our cache with a conflicting home, the
	 * simulator's coherence checker will complain.  So, flush it out
	 * of our cache; we're not going to ever use it again anyway.
	 */
	__insn_finv(&swapper_pgprot);
}

/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 * On Tile, the only valid things for which we can just hand out unchecked
 * PTEs are the kernel code and data.  Anything else might change its
 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 * Note that init_thread_union is released to heap soon after boot,
 * so we include it in the init data.
 *
 * For TILE-Gx, we might want to consider allowing access to PA
 * regions corresponding to PCI space, etc.
 */
int devmem_is_allowed(unsigned long pagenr)
{
	return pagenr < kaddr_to_pfn(_end) &&
		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
		  pagenr < kaddr_to_pfn(_einitdata)) &&
		!(pagenr >= kaddr_to_pfn(_sinittext) ||
		  pagenr <= kaddr_to_pfn(_einittext-1));
}

#ifdef CONFIG_HIGHMEM
static void __init permanent_kmaps_init(pgd_t *pgd_base)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr;

	vaddr = PKMAP_BASE;
	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

	pgd = swapper_pg_dir + pgd_index(vaddr);
	pud = pud_offset(pgd, vaddr);
	pmd = pmd_offset(pud, vaddr);
	pte = pte_offset_kernel(pmd, vaddr);
	pkmap_page_table = pte;
}
#endif /* CONFIG_HIGHMEM */


static void __init init_free_pfn_range(unsigned long start, unsigned long end)
{
	unsigned long pfn;
	struct page *page = pfn_to_page(start);

	for (pfn = start; pfn < end; ) {
		/* Optimize by freeing pages in large batches */
		int order = __ffs(pfn);
		int count, i;
		struct page *p;

		if (order >= MAX_ORDER)
			order = MAX_ORDER-1;
		count = 1 << order;
		while (pfn + count > end) {
			count >>= 1;
			--order;
		}
		for (p = page, i = 0; i < count; ++i, ++p) {
			__ClearPageReserved(p);
			/*
			 * Hacky direct set to avoid unnecessary
			 * lock take/release for EVERY page here.
			 */
			p->_count.counter = 0;
			p->_mapcount.counter = -1;
		}
		init_page_count(page);
		__free_pages(page, order);
		totalram_pages += count;

		page += count;
		pfn += count;
	}
}

static void __init set_non_bootmem_pages_init(void)
{
	struct zone *z;
	for_each_zone(z) {
		unsigned long start, end;
		int nid = z->zone_pgdat->node_id;
		int idx = zone_idx(z);

		start = z->zone_start_pfn;
		if (start == 0)
			continue;  /* bootmem */
		end = start + z->spanned_pages;
		if (idx == ZONE_NORMAL) {
			BUG_ON(start != node_start_pfn[nid]);
			start = node_free_pfn[nid];
		}
#ifdef CONFIG_HIGHMEM
		if (idx == ZONE_HIGHMEM)
			totalhigh_pages += z->spanned_pages;
#endif
		if (kdata_huge) {
			unsigned long percpu_pfn = node_percpu_pfn[nid];
			if (start < percpu_pfn && end > percpu_pfn)
				end = percpu_pfn;
		}
#ifdef CONFIG_PCI
		if (start <= pci_reserve_start_pfn &&
		    end > pci_reserve_start_pfn) {
			if (end > pci_reserve_end_pfn)
				init_free_pfn_range(pci_reserve_end_pfn, end);
			end = pci_reserve_start_pfn;
		}
#endif
		init_free_pfn_range(start, end);
	}
}

/*
 * paging_init() sets up the page tables - note that all of lowmem is
 * already mapped by head.S.
 */
void __init paging_init(void)
{
#ifdef CONFIG_HIGHMEM
	unsigned long vaddr, end;
#endif
#ifdef __tilegx__
	pud_t *pud;
#endif
	pgd_t *pgd_base = swapper_pg_dir;

	kernel_physical_mapping_init(pgd_base);

#ifdef CONFIG_HIGHMEM
	/*
	 * Fixed mappings, only the page table structure has to be
	 * created - mappings will be set by set_fixmap():
	 */
	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
	page_table_range_init(vaddr, end, pgd_base);
	permanent_kmaps_init(pgd_base);
#endif

#ifdef __tilegx__
	/*
	 * Since GX allocates just one pmd_t array worth of vmalloc space,
	 * we go ahead and allocate it statically here, then share it
	 * globally.  As a result we don't have to worry about any task
	 * changing init_mm once we get up and running, and there's no
	 * need for e.g. vmalloc_sync_all().
	 */
	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
	assign_pmd(pud, alloc_pmd());
#endif
}


/*
 * Walk the kernel page tables and derive the page_home() from
 * the PTEs, so that set_pte() can properly validate the caching
 * of all PTEs it sees.
 */
void __init set_page_homes(void)
{
}

static void __init set_max_mapnr_init(void)
{
#ifdef CONFIG_FLATMEM
	max_mapnr = max_low_pfn;
#endif
}

void __init mem_init(void)
{
	int codesize, datasize, initsize;
	int i;
#ifndef __tilegx__
	void *last;
#endif

#ifdef CONFIG_FLATMEM
	BUG_ON(!mem_map);
#endif

#ifdef CONFIG_HIGHMEM
	/* check that fixmap and pkmap do not overlap */
	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
		pr_err("fixmap and kmap areas overlap"
		       " - this will crash\n");
		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
		       FIXADDR_START);
		BUG();
	}
#endif

	set_max_mapnr_init();

	/* this will put all bootmem onto the freelists */
	totalram_pages += free_all_bootmem();

	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
	set_non_bootmem_pages_init();

	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;

	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		num_physpages << (PAGE_SHIFT-10),
		codesize >> 10,
		datasize >> 10,
		initsize >> 10,
		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
	       );

	/*
	 * In debug mode, dump some interesting memory mappings.
	 */
#ifdef CONFIG_HIGHMEM
	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
#endif
#ifdef CONFIG_HUGEVMAP
	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
#endif
	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
	       _VMALLOC_START, _VMALLOC_END - 1);
#ifdef __tilegx__
	for (i = MAX_NUMNODES-1; i >= 0; --i) {
		struct pglist_data *node = &node_data[i];
		if (node->node_present_pages) {
			unsigned long start = (unsigned long)
				pfn_to_kaddr(node->node_start_pfn);
			unsigned long end = start +
				(node->node_present_pages << PAGE_SHIFT);
			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
			       i, start, end - 1);
		}
	}
#else
	last = high_memory;
	for (i = MAX_NUMNODES-1; i >= 0; --i) {
		if ((unsigned long)vbase_map[i] != -1UL) {
			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
			       i, (unsigned long) (vbase_map[i]),
			       (unsigned long) (last-1));
			last = vbase_map[i];
		}
	}
#endif

#ifndef __tilegx__
	/*
	 * Convert from using one lock for all atomic operations to
	 * one per cpu.
	 */
	__init_atomic_per_cpu();
#endif
}

/*
 * this is for the non-NUMA, single node SMP system case.
 * Specifically, in the case of x86, we will always add
 * memory to the highmem for now.
 */
#ifndef CONFIG_NEED_MULTIPLE_NODES
int arch_add_memory(u64 start, u64 size)
{
	struct pglist_data *pgdata = &contig_page_data;
	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long nr_pages = size >> PAGE_SHIFT;

	return __add_pages(zone, start_pfn, nr_pages);
}

int remove_memory(u64 start, u64 size)
{
	return -EINVAL;
}
#endif

struct kmem_cache *pgd_cache;

void __init pgtable_cache_init(void)
{
	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
	if (!pgd_cache)
		panic("pgtable_cache_init(): Cannot create pgd cache");
}

#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
/*
 * The __w1data area holds data that is only written during initialization,
 * and is read-only and thus freely cacheable thereafter.  Fix the page
 * table entries that cover that region accordingly.
 */
static void mark_w1data_ro(void)
{
	/* Loop over page table entries */
	unsigned long addr = (unsigned long)__w1data_begin;
	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
		unsigned long pfn = kaddr_to_pfn((void *)addr);
		pte_t *ptep = virt_to_pte(NULL, addr);
		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
	}
}
#endif

#ifdef CONFIG_DEBUG_PAGEALLOC
static long __write_once initfree;
#else
static long __write_once initfree = 1;
#endif

/* Select whether to free (1) or mark unusable (0) the __init pages. */
static int __init set_initfree(char *str)
{
	long val;
	if (strict_strtol(str, 0, &val) == 0) {
		initfree = val;
		pr_info("initfree: %s free init pages\n",
			initfree ? "will" : "won't");
	}
	return 1;
}
__setup("initfree=", set_initfree);

static void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
	unsigned long addr = (unsigned long) begin;

	if (kdata_huge && !initfree) {
		pr_warning("Warning: ignoring initfree=0:"
			   " incompatible with kdata=huge\n");
		initfree = 1;
	}
	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
	for (addr = begin; addr < end; addr += PAGE_SIZE) {
		/*
		 * Note we just reset the home here directly in the
		 * page table.  We know this is safe because our caller
		 * just flushed the caches on all the other cpus,
		 * and they won't be touching any of these pages.
		 */
		int pfn = kaddr_to_pfn((void *)addr);
		struct page *page = pfn_to_page(pfn);
		pte_t *ptep = virt_to_pte(NULL, addr);
		if (!initfree) {
			/*
			 * If debugging page accesses then do not free
			 * this memory but mark them not present - any
			 * buggy init-section access will create a
			 * kernel page fault:
			 */
			pte_clear(&init_mm, addr, ptep);
			continue;
		}
		__ClearPageReserved(page);
		init_page_count(page);
		if (pte_huge(*ptep))
			BUG_ON(!kdata_huge);
		else
			set_pte_at(&init_mm, addr, ptep,
				   pfn_pte(pfn, PAGE_KERNEL));
		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
		free_page(addr);
		totalram_pages++;
	}
	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}

void free_initmem(void)
{
	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;

	/*
	 * Evict the dirty initdata on the boot cpu, evict the w1data
	 * wherever it's homed, and evict all the init code everywhere.
	 * We are guaranteed that no one will touch the init pages any
	 * more, and although other cpus may be touching the w1data,
	 * we only actually change the caching on tile64, which won't
	 * be keeping local copies in the other tiles' caches anyway.
	 */
	homecache_evict(&cpu_cacheable_map);

	/* Free the data pages that we won't use again after init. */
	free_init_pages("unused kernel data",
			(unsigned long)_sinitdata,
			(unsigned long)_einitdata);

	/*
	 * Free the pages mapped from 0xc0000000 that correspond to code
	 * pages from MEM_SV_INTRPT that we won't use again after init.
	 */
	free_init_pages("unused kernel text",
			(unsigned long)_sinittext - text_delta,
			(unsigned long)_einittext - text_delta);

#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
	/*
	 * Upgrade the .w1data section to globally cached.
	 * We don't do this on tilepro, since the cache architecture
	 * pretty much makes it irrelevant, and in any case we end
	 * up having racing issues with other tiles that may touch
	 * the data after we flush the cache but before we update
	 * the PTEs and flush the TLBs, causing sharer shootdowns
	 * later.  Even though this is to clean data, it seems like
	 * an unnecessary complication.
	 */
	mark_w1data_ro();
#endif

	/* Do a global TLB flush so everyone sees the changes. */
	flush_tlb_all();
}