Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/*
 * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
 *
 * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation. See README and COPYING for
 * more details.
 */

#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/crc32.h>

#include "rtllib.h"

struct rtllib_tkip_data {
#define TKIP_KEY_LEN 32
	u8 key[TKIP_KEY_LEN];
	int key_set;

	u32 tx_iv32;
	u16 tx_iv16;
	u16 tx_ttak[5];
	int tx_phase1_done;

	u32 rx_iv32;
	u16 rx_iv16;
	bool initialized;
	u16 rx_ttak[5];
	int rx_phase1_done;
	u32 rx_iv32_new;
	u16 rx_iv16_new;

	u32 dot11RSNAStatsTKIPReplays;
	u32 dot11RSNAStatsTKIPICVErrors;
	u32 dot11RSNAStatsTKIPLocalMICFailures;

	int key_idx;
	struct crypto_blkcipher *rx_tfm_arc4;
	struct crypto_hash *rx_tfm_michael;
	struct crypto_blkcipher *tx_tfm_arc4;
	struct crypto_hash *tx_tfm_michael;
	/* scratch buffers for virt_to_page() (crypto API) */
	u8 rx_hdr[16], tx_hdr[16];
};

static void *rtllib_tkip_init(int key_idx)
{
	struct rtllib_tkip_data *priv;

	priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
	if (priv == NULL)
		goto fail;
	memset(priv, 0, sizeof(*priv));
	priv->key_idx = key_idx;
	priv->tx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
			CRYPTO_ALG_ASYNC);
	if (IS_ERR(priv->tx_tfm_arc4)) {
		printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
				"crypto API arc4\n");
		priv->tx_tfm_arc4 = NULL;
		goto fail;
	}

	priv->tx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
			CRYPTO_ALG_ASYNC);
	if (IS_ERR(priv->tx_tfm_michael)) {
		printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
				"crypto API michael_mic\n");
		priv->tx_tfm_michael = NULL;
		goto fail;
	}

	priv->rx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
			CRYPTO_ALG_ASYNC);
	if (IS_ERR(priv->rx_tfm_arc4)) {
		printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
				"crypto API arc4\n");
		priv->rx_tfm_arc4 = NULL;
		goto fail;
	}

	priv->rx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
			CRYPTO_ALG_ASYNC);
	if (IS_ERR(priv->rx_tfm_michael)) {
		printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
				"crypto API michael_mic\n");
		priv->rx_tfm_michael = NULL;
		goto fail;
	}
	return priv;

fail:
	if (priv) {
		if (priv->tx_tfm_michael)
			crypto_free_hash(priv->tx_tfm_michael);
		if (priv->tx_tfm_arc4)
			crypto_free_blkcipher(priv->tx_tfm_arc4);
		if (priv->rx_tfm_michael)
			crypto_free_hash(priv->rx_tfm_michael);
		if (priv->rx_tfm_arc4)
			crypto_free_blkcipher(priv->rx_tfm_arc4);
		kfree(priv);
	}

	return NULL;
}


static void rtllib_tkip_deinit(void *priv)
{
	struct rtllib_tkip_data *_priv = priv;

	if (_priv) {
		if (_priv->tx_tfm_michael)
			crypto_free_hash(_priv->tx_tfm_michael);
		if (_priv->tx_tfm_arc4)
			crypto_free_blkcipher(_priv->tx_tfm_arc4);
		if (_priv->rx_tfm_michael)
			crypto_free_hash(_priv->rx_tfm_michael);
		if (_priv->rx_tfm_arc4)
			crypto_free_blkcipher(_priv->rx_tfm_arc4);
	}
	kfree(priv);
}


static inline u16 RotR1(u16 val)
{
	return (val >> 1) | (val << 15);
}


static inline u8 Lo8(u16 val)
{
	return val & 0xff;
}


static inline u8 Hi8(u16 val)
{
	return val >> 8;
}


static inline u16 Lo16(u32 val)
{
	return val & 0xffff;
}


static inline u16 Hi16(u32 val)
{
	return val >> 16;
}


static inline u16 Mk16(u8 hi, u8 lo)
{
	return lo | (((u16) hi) << 8);
}


static inline u16 Mk16_le(u16 *v)
{
	return le16_to_cpu(*v);
}


static const u16 Sbox[256] = {
	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};


static inline u16 _S_(u16 v)
{
	u16 t = Sbox[Hi8(v)];
	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
}


#define PHASE1_LOOP_COUNT 8


static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
{
	int i, j;

	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
	TTAK[0] = Lo16(IV32);
	TTAK[1] = Hi16(IV32);
	TTAK[2] = Mk16(TA[1], TA[0]);
	TTAK[3] = Mk16(TA[3], TA[2]);
	TTAK[4] = Mk16(TA[5], TA[4]);

	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
		j = 2 * (i & 1);
		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
	}
}


static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
			       u16 IV16)
{
	/* Make temporary area overlap WEP seed so that the final copy can be
	 * avoided on little endian hosts. */
	u16 *PPK = (u16 *) &WEPSeed[4];

	/* Step 1 - make copy of TTAK and bring in TSC */
	PPK[0] = TTAK[0];
	PPK[1] = TTAK[1];
	PPK[2] = TTAK[2];
	PPK[3] = TTAK[3];
	PPK[4] = TTAK[4];
	PPK[5] = TTAK[4] + IV16;

	/* Step 2 - 96-bit bijective mixing using S-box */
	PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) &TK[0]));
	PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) &TK[2]));
	PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) &TK[4]));
	PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) &TK[6]));
	PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) &TK[8]));
	PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) &TK[10]));

	PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) &TK[12]));
	PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) &TK[14]));
	PPK[2] += RotR1(PPK[1]);
	PPK[3] += RotR1(PPK[2]);
	PPK[4] += RotR1(PPK[3]);
	PPK[5] += RotR1(PPK[4]);

	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
	 * WEPSeed[0..2] is transmitted as WEP IV */
	WEPSeed[0] = Hi8(IV16);
	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
	WEPSeed[2] = Lo8(IV16);
	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) &TK[0])) >> 1);

#ifdef __BIG_ENDIAN
	{
		int i;
		for (i = 0; i < 6; i++)
			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
	}
#endif
}


static int rtllib_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
	struct rtllib_tkip_data *tkey = priv;
		int len;
	u8 *pos;
	struct rtllib_hdr_4addr *hdr;
	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
				    MAX_DEV_ADDR_SIZE);
	struct blkcipher_desc desc = {.tfm = tkey->tx_tfm_arc4};
	int ret = 0;
	u8 rc4key[16],  *icv;
	u32 crc;
	struct scatterlist sg;

	if (skb_headroom(skb) < 8 || skb_tailroom(skb) < 4 ||
	    skb->len < hdr_len)
		return -1;

	hdr = (struct rtllib_hdr_4addr *) skb->data;

	if (!tcb_desc->bHwSec) {
		if (!tkey->tx_phase1_done) {
			tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
					tkey->tx_iv32);
			tkey->tx_phase1_done = 1;
		}
		tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak,
				   tkey->tx_iv16);
	} else
	tkey->tx_phase1_done = 1;


	len = skb->len - hdr_len;
	pos = skb_push(skb, 8);
	memmove(pos, pos + 8, hdr_len);
	pos += hdr_len;

	if (tcb_desc->bHwSec) {
		*pos++ = Hi8(tkey->tx_iv16);
		*pos++ = (Hi8(tkey->tx_iv16) | 0x20) & 0x7F;
		*pos++ = Lo8(tkey->tx_iv16);
	} else {
		*pos++ = rc4key[0];
		*pos++ = rc4key[1];
		*pos++ = rc4key[2];
	}

	*pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */;
	*pos++ = tkey->tx_iv32 & 0xff;
	*pos++ = (tkey->tx_iv32 >> 8) & 0xff;
	*pos++ = (tkey->tx_iv32 >> 16) & 0xff;
	*pos++ = (tkey->tx_iv32 >> 24) & 0xff;

	if (!tcb_desc->bHwSec) {
		icv = skb_put(skb, 4);
		crc = ~crc32_le(~0, pos, len);
		icv[0] = crc;
		icv[1] = crc >> 8;
		icv[2] = crc >> 16;
		icv[3] = crc >> 24;

		sg_init_one(&sg, pos, len+4);


		crypto_blkcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
		ret = crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
	}

	tkey->tx_iv16++;
	if (tkey->tx_iv16 == 0) {
		tkey->tx_phase1_done = 0;
		tkey->tx_iv32++;
	}

	if (!tcb_desc->bHwSec)
		return ret;
	else
		return 0;


}

static int rtllib_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
	struct rtllib_tkip_data *tkey = priv;
	u8 keyidx, *pos;
	u32 iv32;
	u16 iv16;
	struct rtllib_hdr_4addr *hdr;
	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
				    MAX_DEV_ADDR_SIZE);
	struct blkcipher_desc desc = {.tfm = tkey->rx_tfm_arc4};
	u8 rc4key[16];
	u8 icv[4];
	u32 crc;
	struct scatterlist sg;
	int plen;
	if (skb->len < hdr_len + 8 + 4)
		return -1;

	hdr = (struct rtllib_hdr_4addr *) skb->data;
	pos = skb->data + hdr_len;
	keyidx = pos[3];
	if (!(keyidx & (1 << 5))) {
		if (net_ratelimit()) {
			printk(KERN_DEBUG "TKIP: received packet without ExtIV"
			       " flag from %pM\n", hdr->addr2);
		}
		return -2;
	}
	keyidx >>= 6;
	if (tkey->key_idx != keyidx) {
		printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
		       "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
		return -6;
	}
	if (!tkey->key_set) {
		if (net_ratelimit()) {
			printk(KERN_DEBUG "TKIP: received packet from %pM"
			       " with keyid=%d that does not have a configured"
			       " key\n", hdr->addr2, keyidx);
		}
		return -3;
	}
	iv16 = (pos[0] << 8) | pos[2];
	iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
	pos += 8;

	if (!tcb_desc->bHwSec || (skb->cb[0] == 1)) {
		if ((iv32 < tkey->rx_iv32 ||
		    (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) &&
		    tkey->initialized) {
			if (net_ratelimit()) {
				printk(KERN_DEBUG "TKIP: replay detected: STA="
				       " %pM previous TSC %08x%04x received "
				      "TSC %08x%04x\n",hdr->addr2,
				      tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
			}
			tkey->dot11RSNAStatsTKIPReplays++;
			return -4;
		}
		tkey->initialized = true;

		if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
			tkip_mixing_phase1(tkey->rx_ttak, tkey->key,
					   hdr->addr2, iv32);
			tkey->rx_phase1_done = 1;
		}
		tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);

		plen = skb->len - hdr_len - 12;

		sg_init_one(&sg, pos, plen+4);

		crypto_blkcipher_setkey(tkey->rx_tfm_arc4, rc4key, 16);
		if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
			if (net_ratelimit()) {
				printk(KERN_DEBUG ": TKIP: failed to decrypt "
				       "received packet from %pM\n",
				       hdr->addr2);
			}
			return -7;
		}

		crc = ~crc32_le(~0, pos, plen);
		icv[0] = crc;
		icv[1] = crc >> 8;
		icv[2] = crc >> 16;
		icv[3] = crc >> 24;

		if (memcmp(icv, pos + plen, 4) != 0) {
			if (iv32 != tkey->rx_iv32) {
				/* Previously cached Phase1 result was already
				 * lost, so it needs to be recalculated for the
				 * next packet. */
				tkey->rx_phase1_done = 0;
			}
			if (net_ratelimit()) {
				printk(KERN_DEBUG "TKIP: ICV error detected: STA="
				" %pM\n", hdr->addr2);
			}
			tkey->dot11RSNAStatsTKIPICVErrors++;
			return -5;
		}

	}

	/* Update real counters only after Michael MIC verification has
	 * completed */
	tkey->rx_iv32_new = iv32;
	tkey->rx_iv16_new = iv16;

	/* Remove IV and ICV */
	memmove(skb->data + 8, skb->data, hdr_len);
	skb_pull(skb, 8);
	skb_trim(skb, skb->len - 4);

	return keyidx;
}


static int michael_mic(struct crypto_hash *tfm_michael, u8 *key, u8 *hdr,
		       u8 *data, size_t data_len, u8 *mic)
{
	struct hash_desc desc;
	struct scatterlist sg[2];

	if (tfm_michael == NULL) {
		printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
		return -1;
	}
	sg_init_table(sg, 2);
	sg_set_buf(&sg[0], hdr, 16);
	sg_set_buf(&sg[1], data, data_len);

	if (crypto_hash_setkey(tfm_michael, key, 8))
		return -1;

	desc.tfm = tfm_michael;
	desc.flags = 0;
	return crypto_hash_digest(&desc, sg, data_len + 16, mic);
}

static void michael_mic_hdr(struct sk_buff *skb, u8 *hdr)
{
	struct rtllib_hdr_4addr *hdr11;

	hdr11 = (struct rtllib_hdr_4addr *) skb->data;
	switch (le16_to_cpu(hdr11->frame_ctl) &
		(RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS)) {
	case RTLLIB_FCTL_TODS:
		memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
		memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
		break;
	case RTLLIB_FCTL_FROMDS:
		memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
		memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
		break;
	case RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS:
		memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
		memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
		break;
	case 0:
		memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
		memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
		break;
	}

	hdr[12] = 0; /* priority */

	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
}


static int rtllib_michael_mic_add(struct sk_buff *skb, int hdr_len, void *priv)
{
	struct rtllib_tkip_data *tkey = priv;
	u8 *pos;
	struct rtllib_hdr_4addr *hdr;

	hdr = (struct rtllib_hdr_4addr *) skb->data;

	if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
		printk(KERN_DEBUG "Invalid packet for Michael MIC add "
		       "(tailroom=%d hdr_len=%d skb->len=%d)\n",
		       skb_tailroom(skb), hdr_len, skb->len);
		return -1;
	}

	michael_mic_hdr(skb, tkey->tx_hdr);

	if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
		tkey->tx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;
	pos = skb_put(skb, 8);
	if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
	    skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
		return -1;

	return 0;
}


static void rtllib_michael_mic_failure(struct net_device *dev,
				       struct rtllib_hdr_4addr *hdr,
				       int keyidx)
{
	union iwreq_data wrqu;
	struct iw_michaelmicfailure ev;

	/* TODO: needed parameters: count, keyid, key type, TSC */
	memset(&ev, 0, sizeof(ev));
	ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
	if (hdr->addr1[0] & 0x01)
		ev.flags |= IW_MICFAILURE_GROUP;
	else
		ev.flags |= IW_MICFAILURE_PAIRWISE;
	ev.src_addr.sa_family = ARPHRD_ETHER;
	memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
	memset(&wrqu, 0, sizeof(wrqu));
	wrqu.data.length = sizeof(ev);
	wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *) &ev);
}

static int rtllib_michael_mic_verify(struct sk_buff *skb, int keyidx,
				     int hdr_len, void *priv,
				     struct rtllib_device *ieee)
{
	struct rtllib_tkip_data *tkey = priv;
	u8 mic[8];
	struct rtllib_hdr_4addr *hdr;

	hdr = (struct rtllib_hdr_4addr *) skb->data;

	if (!tkey->key_set)
		return -1;

	michael_mic_hdr(skb, tkey->rx_hdr);
	if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
		tkey->rx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;

	if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
			skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
		return -1;

	if ((memcmp(mic, skb->data + skb->len - 8, 8) != 0) ||
	   (ieee->force_mic_error)) {
		struct rtllib_hdr_4addr *hdr;
		hdr = (struct rtllib_hdr_4addr *) skb->data;
		printk(KERN_DEBUG "%s: Michael MIC verification failed for "
		       "MSDU from %pM keyidx=%d\n",
		       skb->dev ? skb->dev->name : "N/A", hdr->addr2,
		       keyidx);
		printk(KERN_DEBUG "%d, force_mic_error = %d\n",
		       (memcmp(mic, skb->data + skb->len - 8, 8) != 0),\
			ieee->force_mic_error);
		if (skb->dev) {
			printk(KERN_INFO "skb->dev != NULL\n");
			rtllib_michael_mic_failure(skb->dev, hdr, keyidx);
		}
		tkey->dot11RSNAStatsTKIPLocalMICFailures++;
		ieee->force_mic_error = false;
		return -1;
	}

	/* Update TSC counters for RX now that the packet verification has
	 * completed. */
	tkey->rx_iv32 = tkey->rx_iv32_new;
	tkey->rx_iv16 = tkey->rx_iv16_new;

	skb_trim(skb, skb->len - 8);

	return 0;
}


static int rtllib_tkip_set_key(void *key, int len, u8 *seq, void *priv)
{
	struct rtllib_tkip_data *tkey = priv;
	int keyidx;
	struct crypto_hash *tfm = tkey->tx_tfm_michael;
	struct crypto_blkcipher *tfm2 = tkey->tx_tfm_arc4;
	struct crypto_hash *tfm3 = tkey->rx_tfm_michael;
	struct crypto_blkcipher *tfm4 = tkey->rx_tfm_arc4;

	keyidx = tkey->key_idx;
	memset(tkey, 0, sizeof(*tkey));
	tkey->key_idx = keyidx;
	tkey->tx_tfm_michael = tfm;
	tkey->tx_tfm_arc4 = tfm2;
	tkey->rx_tfm_michael = tfm3;
	tkey->rx_tfm_arc4 = tfm4;

	if (len == TKIP_KEY_LEN) {
		memcpy(tkey->key, key, TKIP_KEY_LEN);
		tkey->key_set = 1;
		tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
		if (seq) {
			tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
				(seq[3] << 8) | seq[2];
			tkey->rx_iv16 = (seq[1] << 8) | seq[0];
		}
	} else if (len == 0)
		tkey->key_set = 0;
	else
		return -1;

	return 0;
}


static int rtllib_tkip_get_key(void *key, int len, u8 *seq, void *priv)
{
	struct rtllib_tkip_data *tkey = priv;

	if (len < TKIP_KEY_LEN)
		return -1;

	if (!tkey->key_set)
		return 0;
	memcpy(key, tkey->key, TKIP_KEY_LEN);

	if (seq) {
		/* Return the sequence number of the last transmitted frame. */
		u16 iv16 = tkey->tx_iv16;
		u32 iv32 = tkey->tx_iv32;
		if (iv16 == 0)
			iv32--;
		iv16--;
		seq[0] = tkey->tx_iv16;
		seq[1] = tkey->tx_iv16 >> 8;
		seq[2] = tkey->tx_iv32;
		seq[3] = tkey->tx_iv32 >> 8;
		seq[4] = tkey->tx_iv32 >> 16;
		seq[5] = tkey->tx_iv32 >> 24;
	}

	return TKIP_KEY_LEN;
}


static char *rtllib_tkip_print_stats(char *p, void *priv)
{
	struct rtllib_tkip_data *tkip = priv;
	p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
		     "tx_pn=%02x%02x%02x%02x%02x%02x "
		     "rx_pn=%02x%02x%02x%02x%02x%02x "
		     "replays=%d icv_errors=%d local_mic_failures=%d\n",
		     tkip->key_idx, tkip->key_set,
		     (tkip->tx_iv32 >> 24) & 0xff,
		     (tkip->tx_iv32 >> 16) & 0xff,
		     (tkip->tx_iv32 >> 8) & 0xff,
		     tkip->tx_iv32 & 0xff,
		     (tkip->tx_iv16 >> 8) & 0xff,
		     tkip->tx_iv16 & 0xff,
		     (tkip->rx_iv32 >> 24) & 0xff,
		     (tkip->rx_iv32 >> 16) & 0xff,
		     (tkip->rx_iv32 >> 8) & 0xff,
		     tkip->rx_iv32 & 0xff,
		     (tkip->rx_iv16 >> 8) & 0xff,
		     tkip->rx_iv16 & 0xff,
		     tkip->dot11RSNAStatsTKIPReplays,
		     tkip->dot11RSNAStatsTKIPICVErrors,
		     tkip->dot11RSNAStatsTKIPLocalMICFailures);
	return p;
}


static struct rtllib_crypto_ops rtllib_crypt_tkip = {
	.name			= "TKIP",
	.init			= rtllib_tkip_init,
	.deinit			= rtllib_tkip_deinit,
	.encrypt_mpdu		= rtllib_tkip_encrypt,
	.decrypt_mpdu		= rtllib_tkip_decrypt,
	.encrypt_msdu		= rtllib_michael_mic_add,
	.decrypt_msdu		= rtllib_michael_mic_verify,
	.set_key		= rtllib_tkip_set_key,
	.get_key		= rtllib_tkip_get_key,
	.print_stats		= rtllib_tkip_print_stats,
	.extra_prefix_len	= 4 + 4, /* IV + ExtIV */
	.extra_postfix_len	= 8 + 4, /* MIC + ICV */
	.owner			= THIS_MODULE,
};


int __init rtllib_crypto_tkip_init(void)
{
	return rtllib_register_crypto_ops(&rtllib_crypt_tkip);
}


void __exit rtllib_crypto_tkip_exit(void)
{
	rtllib_unregister_crypto_ops(&rtllib_crypt_tkip);
}

void rtllib_tkip_null(void)
{
	return;
}