Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
 *  linux/fs/hpfs/hpfs.h
 *
 *  HPFS structures by Chris Smith, 1993
 *
 *  a little bit modified by Mikulas Patocka, 1998-1999
 */

/* The paper

     Duncan, Roy
     Design goals and implementation of the new High Performance File System
     Microsoft Systems Journal  Sept 1989  v4 n5 p1(13)

   describes what HPFS looked like when it was new, and it is the source
   of most of the information given here.  The rest is conjecture.

   For definitive information on the Duncan paper, see it, not this file.
   For definitive information on HPFS, ask somebody else -- this is guesswork.
   There are certain to be many mistakes. */

#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
#error unknown endian
#endif

/* Notation */

typedef u32 secno;			/* sector number, partition relative */

typedef secno dnode_secno;		/* sector number of a dnode */
typedef secno fnode_secno;		/* sector number of an fnode */
typedef secno anode_secno;		/* sector number of an anode */

typedef u32 time32_t;		/* 32-bit time_t type */

/* sector 0 */

/* The boot block is very like a FAT boot block, except that the
   29h signature byte is 28h instead, and the ID string is "HPFS". */

#define BB_MAGIC 0xaa55

struct hpfs_boot_block
{
  u8 jmp[3];
  u8 oem_id[8];
  u8 bytes_per_sector[2];	/* 512 */
  u8 sectors_per_cluster;
  u8 n_reserved_sectors[2];
  u8 n_fats;
  u8 n_rootdir_entries[2];
  u8 n_sectors_s[2];
  u8 media_byte;
  u16 sectors_per_fat;
  u16 sectors_per_track;
  u16 heads_per_cyl;
  u32 n_hidden_sectors;
  u32 n_sectors_l;		/* size of partition */
  u8 drive_number;
  u8 mbz;
  u8 sig_28h;			/* 28h */
  u8 vol_serno[4];
  u8 vol_label[11];
  u8 sig_hpfs[8];		/* "HPFS    " */
  u8 pad[448];
  u16 magic;			/* aa55 */
};


/* sector 16 */

/* The super block has the pointer to the root directory. */

#define SB_MAGIC 0xf995e849

struct hpfs_super_block
{
  u32 magic;				/* f995 e849 */
  u32 magic1;				/* fa53 e9c5, more magic? */
  u8 version;				/* version of a filesystem  usually 2 */
  u8 funcversion;			/* functional version - oldest version
  					   of filesystem that can understand
					   this disk */
  u16 zero;				/* 0 */
  fnode_secno root;			/* fnode of root directory */
  secno n_sectors;			/* size of filesystem */
  u32 n_badblocks;			/* number of bad blocks */
  secno bitmaps;			/* pointers to free space bit maps */
  u32 zero1;				/* 0 */
  secno badblocks;			/* bad block list */
  u32 zero3;				/* 0 */
  time32_t last_chkdsk;			/* date last checked, 0 if never */
  time32_t last_optimize;		/* date last optimized, 0 if never */
  secno n_dir_band;			/* number of sectors in dir band */
  secno dir_band_start;			/* first sector in dir band */
  secno dir_band_end;			/* last sector in dir band */
  secno dir_band_bitmap;		/* free space map, 1 dnode per bit */
  u8 volume_name[32];			/* not used */
  secno user_id_table;			/* 8 preallocated sectors - user id */
  u32 zero6[103];			/* 0 */
};


/* sector 17 */

/* The spare block has pointers to spare sectors.  */

#define SP_MAGIC 0xf9911849

struct hpfs_spare_block
{
  u32 magic;				/* f991 1849 */
  u32 magic1;				/* fa52 29c5, more magic? */

#ifdef __LITTLE_ENDIAN
  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
  u8 sparedir_used: 1;			/* spare dirblks used */
  u8 hotfixes_used: 1;			/* hotfixes used */
  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
  u8 bad_bitmap: 1;			/* bad bitmap */
  u8 fast: 1;				/* partition was fast formatted */
  u8 old_wrote: 1;			/* old version wrote to partion */
  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
#else
  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
  u8 old_wrote: 1;			/* old version wrote to partion */
  u8 fast: 1;				/* partition was fast formatted */
  u8 bad_bitmap: 1;			/* bad bitmap */
  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
  u8 hotfixes_used: 1;			/* hotfixes used */
  u8 sparedir_used: 1;			/* spare dirblks used */
  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
#endif

#ifdef __LITTLE_ENDIAN
  u8 install_dasd_limits: 1;		/* HPFS386 flags */
  u8 resynch_dasd_limits: 1;
  u8 dasd_limits_operational: 1;
  u8 multimedia_active: 1;
  u8 dce_acls_active: 1;
  u8 dasd_limits_dirty: 1;
  u8 flag67: 2;
#else
  u8 flag67: 2;
  u8 dasd_limits_dirty: 1;
  u8 dce_acls_active: 1;
  u8 multimedia_active: 1;
  u8 dasd_limits_operational: 1;
  u8 resynch_dasd_limits: 1;
  u8 install_dasd_limits: 1;		/* HPFS386 flags */
#endif

  u8 mm_contlgulty;
  u8 unused;

  secno hotfix_map;			/* info about remapped bad sectors */
  u32 n_spares_used;			/* number of hotfixes */
  u32 n_spares;				/* number of spares in hotfix map */
  u32 n_dnode_spares_free;		/* spare dnodes unused */
  u32 n_dnode_spares;			/* length of spare_dnodes[] list,
					   follows in this block*/
  secno code_page_dir;			/* code page directory block */
  u32 n_code_pages;			/* number of code pages */
  u32 super_crc;			/* on HPFS386 and LAN Server this is
  					   checksum of superblock, on normal
					   OS/2 unused */
  u32 spare_crc;			/* on HPFS386 checksum of spareblock */
  u32 zero1[15];			/* unused */
  dnode_secno spare_dnodes[100];	/* emergency free dnode list */
  u32 zero2[1];				/* room for more? */
};

/* The bad block list is 4 sectors long.  The first word must be zero,
   the remaining words give n_badblocks bad block numbers.
   I bet you can see it coming... */

#define BAD_MAGIC 0
       
/* The hotfix map is 4 sectors long.  It looks like

       secno from[n_spares];
       secno to[n_spares];

   The to[] list is initialized to point to n_spares preallocated empty
   sectors.  The from[] list contains the sector numbers of bad blocks
   which have been remapped to corresponding sectors in the to[] list.
   n_spares_used gives the length of the from[] list. */


/* Sectors 18 and 19 are preallocated and unused.
   Maybe they're spares for 16 and 17, but simple substitution fails. */


/* The code page info pointed to by the spare block consists of an index
   block and blocks containing uppercasing tables.  I don't know what
   these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
   itself.  Linux doesn't use them either. */

/* block pointed to by spareblock->code_page_dir */

#define CP_DIR_MAGIC 0x494521f7

struct code_page_directory
{
  u32 magic;				/* 4945 21f7 */
  u32 n_code_pages;			/* number of pointers following */
  u32 zero1[2];
  struct {
    u16 ix;				/* index */
    u16 code_page_number;		/* code page number */
    u32 bounds;				/* matches corresponding word
					   in data block */
    secno code_page_data;		/* sector number of a code_page_data
					   containing c.p. array */
    u16 index;				/* index in c.p. array in that sector*/
    u16 unknown;			/* some unknown value; usually 0;
    					   2 in Japanese version */
  } array[31];				/* unknown length */
};

/* blocks pointed to by code_page_directory */

#define CP_DATA_MAGIC 0x894521f7

struct code_page_data
{
  u32 magic;				/* 8945 21f7 */
  u32 n_used;				/* # elements used in c_p_data[] */
  u32 bounds[3];			/* looks a bit like
					     (beg1,end1), (beg2,end2)
					   one byte each */
  u16 offs[3];				/* offsets from start of sector
					   to start of c_p_data[ix] */
  struct {
    u16 ix;				/* index */
    u16 code_page_number;		/* code page number */
    u16 unknown;			/* the same as in cp directory */
    u8 map[128];			/* upcase table for chars 80..ff */
    u16 zero2;
  } code_page[3];
  u8 incognita[78];
};


/* Free space bitmaps are 4 sectors long, which is 16384 bits.
   16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
   Bit order in the maps is little-endian.  0 means taken, 1 means free.

   Bit map sectors are marked allocated in the bit maps, and so are sectors 
   off the end of the partition.

   Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
   Band 1 is 4000-7fff, its map is in 7ffc-7fff.
   Band 2 is 8000-ffff, its map is in 8000-8003.
   The remaining bands have maps in their first (even) or last (odd) 4 sectors
     -- if the last, partial, band is odd its map is in its last 4 sectors.

   The bitmap locations are given in a table pointed to by the super block.
   No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
   just where they usually are.

   The "directory band" is a bunch of sectors preallocated for dnodes.
   It has a 4-sector free space bitmap of its own.  Each bit in the map
   corresponds to one 4-sector dnode, bit 0 of the map corresponding to
   the first 4 sectors of the directory band.  The entire band is marked
   allocated in the main bitmap.   The super block gives the locations
   of the directory band and its bitmap.  ("band" doesn't mean it is
   8 meg long; it isn't.)  */


/* dnode: directory.  4 sectors long */

/* A directory is a tree of dnodes.  The fnode for a directory
   contains one pointer, to the root dnode of the tree.  The fnode
   never moves, the dnodes do the B-tree thing, splitting and merging
   as files are added and removed.  */

#define DNODE_MAGIC   0x77e40aae

struct dnode {
  u32 magic;				/* 77e4 0aae */
  u32 first_free;			/* offset from start of dnode to
					   first free dir entry */
#ifdef __LITTLE_ENDIAN
  u8 root_dnode: 1;			/* Is it root dnode? */
  u8 increment_me: 7;			/* some kind of activity counter? */
					/* Neither HPFS.IFS nor CHKDSK cares
					   if you change this word */
#else
  u8 increment_me: 7;			/* some kind of activity counter? */
					/* Neither HPFS.IFS nor CHKDSK cares
					   if you change this word */
  u8 root_dnode: 1;			/* Is it root dnode? */
#endif
  u8 increment_me2[3];
  secno up;				/* (root dnode) directory's fnode
					   (nonroot) parent dnode */
  dnode_secno self;			/* pointer to this dnode */
  u8 dirent[2028];			/* one or more dirents */
};

struct hpfs_dirent {
  u16 length;				/* offset to next dirent */

#ifdef __LITTLE_ENDIAN
  u8 first: 1;				/* set on phony ^A^A (".") entry */
  u8 has_acl: 1;
  u8 down: 1;				/* down pointer present (after name) */
  u8 last: 1;				/* set on phony \377 entry */
  u8 has_ea: 1;				/* entry has EA */
  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
  u8 has_explicit_acl: 1;
  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
					   I have no idea why this is
					   interesting in a dir entry */
#else
  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
					   I have no idea why this is
					   interesting in a dir entry */
  u8 has_explicit_acl: 1;
  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
  u8 has_ea: 1;				/* entry has EA */
  u8 last: 1;				/* set on phony \377 entry */
  u8 down: 1;				/* down pointer present (after name) */
  u8 has_acl: 1;
  u8 first: 1;				/* set on phony ^A^A (".") entry */
#endif

#ifdef __LITTLE_ENDIAN
  u8 read_only: 1;			/* dos attrib */
  u8 hidden: 1;				/* dos attrib */
  u8 system: 1;				/* dos attrib */
  u8 flag11: 1;				/* would be volume label dos attrib */
  u8 directory: 1;			/* dos attrib */
  u8 archive: 1;			/* dos attrib */
  u8 not_8x3: 1;			/* name is not 8.3 */
  u8 flag15: 1;
#else
  u8 flag15: 1;
  u8 not_8x3: 1;			/* name is not 8.3 */
  u8 archive: 1;			/* dos attrib */
  u8 directory: 1;			/* dos attrib */
  u8 flag11: 1;				/* would be volume label dos attrib */
  u8 system: 1;				/* dos attrib */
  u8 hidden: 1;				/* dos attrib */
  u8 read_only: 1;			/* dos attrib */
#endif

  fnode_secno fnode;			/* fnode giving allocation info */
  time32_t write_date;			/* mtime */
  u32 file_size;			/* file length, bytes */
  time32_t read_date;			/* atime */
  time32_t creation_date;			/* ctime */
  u32 ea_size;				/* total EA length, bytes */
  u8 no_of_acls;			/* number of ACL's (low 3 bits) */
  u8 ix;				/* code page index (of filename), see
					   struct code_page_data */
  u8 namelen, name[1];			/* file name */
  /* dnode_secno down;	  btree down pointer, if present,
     			  follows name on next word boundary, or maybe it
			  precedes next dirent, which is on a word boundary. */
};


/* B+ tree: allocation info in fnodes and anodes */

/* dnodes point to fnodes which are responsible for listing the sectors
   assigned to the file.  This is done with trees of (length,address)
   pairs.  (Actually triples, of (length, file-address, disk-address)
   which can represent holes.  Find out if HPFS does that.)
   At any rate, fnodes contain a small tree; if subtrees are needed
   they occupy essentially a full block in anodes.  A leaf-level tree node
   has 3-word entries giving sector runs, a non-leaf node has 2-word
   entries giving subtree pointers.  A flag in the header says which. */

struct bplus_leaf_node
{
  u32 file_secno;			/* first file sector in extent */
  u32 length;				/* length, sectors */
  secno disk_secno;			/* first corresponding disk sector */
};

struct bplus_internal_node
{
  u32 file_secno;			/* subtree maps sectors < this  */
  anode_secno down;			/* pointer to subtree */
};

struct bplus_header
{
#ifdef __LITTLE_ENDIAN
  u8 hbff: 1;			/* high bit of first free entry offset */
  u8 flag1234: 4;
  u8 fnode_parent: 1;			/* ? we're pointed to by an fnode,
					   the data btree or some ea or the
					   main ea bootage pointer ea_secno */
					/* also can get set in fnodes, which
					   may be a chkdsk glitch or may mean
					   this bit is irrelevant in fnodes,
					   or this interpretation is all wet */
  u8 binary_search: 1;			/* suggest binary search (unused) */
  u8 internal: 1;			/* 1 -> (internal) tree of anodes
					   0 -> (leaf) list of extents */
#else
  u8 internal: 1;			/* 1 -> (internal) tree of anodes
					   0 -> (leaf) list of extents */
  u8 binary_search: 1;			/* suggest binary search (unused) */
  u8 fnode_parent: 1;			/* ? we're pointed to by an fnode,
					   the data btree or some ea or the
					   main ea bootage pointer ea_secno */
					/* also can get set in fnodes, which
					   may be a chkdsk glitch or may mean
					   this bit is irrelevant in fnodes,
					   or this interpretation is all wet */
  u8 flag1234: 4;
  u8 hbff: 1;			/* high bit of first free entry offset */
#endif
  u8 fill[3];
  u8 n_free_nodes;			/* free nodes in following array */
  u8 n_used_nodes;			/* used nodes in following array */
  u16 first_free;			/* offset from start of header to
					   first free node in array */
  union {
    struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving
					       subtree pointers */
    struct bplus_leaf_node external[0];	    /* (external) 3-word entries giving
					       sector runs */
  } u;
};

/* fnode: root of allocation b+ tree, and EA's */

/* Every file and every directory has one fnode, pointed to by the directory
   entry and pointing to the file's sectors or directory's root dnode.  EA's
   are also stored here, and there are said to be ACL's somewhere here too. */

#define FNODE_MAGIC 0xf7e40aae

struct fnode
{
  u32 magic;				/* f7e4 0aae */
  u32 zero1[2];				/* read history */
  u8 len, name[15];			/* true length, truncated name */
  fnode_secno up;			/* pointer to file's directory fnode */
  secno acl_size_l;
  secno acl_secno;
  u16 acl_size_s;
  u8 acl_anode;
  u8 zero2;				/* history bit count */
  u32 ea_size_l;			/* length of disk-resident ea's */
  secno ea_secno;			/* first sector of disk-resident ea's*/
  u16 ea_size_s;			/* length of fnode-resident ea's */

#ifdef __LITTLE_ENDIAN
  u8 flag0: 1;
  u8 ea_anode: 1;			/* 1 -> ea_secno is an anode */
  u8 flag234567: 6;
#else
  u8 flag234567: 6;
  u8 ea_anode: 1;			/* 1 -> ea_secno is an anode */
  u8 flag0: 1;
#endif

#ifdef __LITTLE_ENDIAN
  u8 dirflag: 1;			/* 1 -> directory.  first & only extent
					   points to dnode. */
  u8 flag9012345: 7;
#else
  u8 flag9012345: 7;
  u8 dirflag: 1;			/* 1 -> directory.  first & only extent
					   points to dnode. */
#endif

  struct bplus_header btree;		/* b+ tree, 8 extents or 12 subtrees */
  union {
    struct bplus_leaf_node external[8];
    struct bplus_internal_node internal[12];
  } u;

  u32 file_size;			/* file length, bytes */
  u32 n_needea;				/* number of EA's with NEEDEA set */
  u8 user_id[16];			/* unused */
  u16 ea_offs;				/* offset from start of fnode
					   to first fnode-resident ea */
  u8 dasd_limit_treshhold;
  u8 dasd_limit_delta;
  u32 dasd_limit;
  u32 dasd_usage;
  u8 ea[316];				/* zero or more EA's, packed together
					   with no alignment padding.
					   (Do not use this name, get here
					   via fnode + ea_offs. I think.) */
};


/* anode: 99.44% pure allocation tree */

#define ANODE_MAGIC 0x37e40aae

struct anode
{
  u32 magic;				/* 37e4 0aae */
  anode_secno self;			/* pointer to this anode */
  secno up;				/* parent anode or fnode */

  struct bplus_header btree;		/* b+tree, 40 extents or 60 subtrees */
  union {
    struct bplus_leaf_node external[40];
    struct bplus_internal_node internal[60];
  } u;

  u32 fill[3];				/* unused */
};


/* extended attributes.

   A file's EA info is stored as a list of (name,value) pairs.  It is
   usually in the fnode, but (if it's large) it is moved to a single
   sector run outside the fnode, or to multiple runs with an anode tree
   that points to them.

   The value of a single EA is stored along with the name, or (if large)
   it is moved to a single sector run, or multiple runs pointed to by an
   anode tree, pointed to by the value field of the (name,value) pair.

   Flags in the EA tell whether the value is immediate, in a single sector
   run, or in multiple runs.  Flags in the fnode tell whether the EA list
   is immediate, in a single run, or in multiple runs. */

struct extended_attribute
{
#ifdef __LITTLE_ENDIAN
  u8 indirect: 1;			/* 1 -> value gives sector number
					   where real value starts */
  u8 anode: 1;				/* 1 -> sector is an anode
					   that points to fragmented value */
  u8 flag23456: 5;
  u8 needea: 1;				/* required ea */
#else
  u8 needea: 1;				/* required ea */
  u8 flag23456: 5;
  u8 anode: 1;				/* 1 -> sector is an anode
					   that points to fragmented value */
  u8 indirect: 1;			/* 1 -> value gives sector number
					   where real value starts */
#endif
  u8 namelen;				/* length of name, bytes */
  u8 valuelen_lo;			/* length of value, bytes */
  u8 valuelen_hi;			/* length of value, bytes */
  u8 name[0];
  /*
    u8 name[namelen];			ascii attrib name
    u8 nul;				terminating '\0', not counted
    u8 value[valuelen];			value, arbitrary
      if this.indirect, valuelen is 8 and the value is
        u32 length;			real length of value, bytes
        secno secno;			sector address where it starts
      if this.anode, the above sector number is the root of an anode tree
        which points to the value.
  */
};

/*
   Local Variables:
   comment-column: 40
   End:
*/