Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
    comedi/drivers/icp_multi.c

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
*/

/*
Driver: icp_multi
Description: Inova ICP_MULTI
Author: Anne Smorthit <anne.smorthit@sfwte.ch>
Devices: [Inova] ICP_MULTI (icp_multi)
Status: works

The driver works for analog input and output and digital input and output.
It does not work with interrupts or with the counters.  Currently no support
for DMA.

It has 16 single-ended or 8 differential Analogue Input channels with 12-bit
resolution.  Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA.  Input
ranges can be individually programmed for each channel.  Voltage or current
measurement is selected by jumper.

There are 4 x 12-bit Analogue Outputs.  Ranges : 5V, 10V, +/-5V, +/-10V

16 x Digital Inputs, 24V

8 x Digital Outputs, 24V, 1A

4 x 16-bit counters

Configuration options: not applicable, uses PCI auto config
*/

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>

#include "../comedidev.h"

#define ICP_MULTI_ADC_CSR	0	/* R/W: ADC command/status register */
#define ICP_MULTI_AI		2	/* R:   Analogue input data */
#define ICP_MULTI_DAC_CSR	4	/* R/W: DAC command/status register */
#define ICP_MULTI_AO		6	/* R/W: Analogue output data */
#define ICP_MULTI_DI		8	/* R/W: Digital inputs */
#define ICP_MULTI_DO		0x0A	/* R/W: Digital outputs */
#define ICP_MULTI_INT_EN	0x0C	/* R/W: Interrupt enable register */
#define ICP_MULTI_INT_STAT	0x0E	/* R/W: Interrupt status register */
#define ICP_MULTI_CNTR0		0x10	/* R/W: Counter 0 */
#define ICP_MULTI_CNTR1		0x12	/* R/W: counter 1 */
#define ICP_MULTI_CNTR2		0x14	/* R/W: Counter 2 */
#define ICP_MULTI_CNTR3		0x16	/* R/W: Counter 3 */

/*  Define bits from ADC command/status register */
#define	ADC_ST		0x0001	/* Start ADC */
#define	ADC_BSY		0x0001	/* ADC busy */
#define ADC_BI		0x0010	/* Bipolar input range 1 = bipolar */
#define ADC_RA		0x0020	/* Input range 0 = 5V, 1 = 10V */
#define	ADC_DI		0x0040	/* Differential input mode 1 = differential */

/*  Define bits from DAC command/status register */
#define	DAC_ST		0x0001	/* Start DAC */
#define DAC_BSY		0x0001	/* DAC busy */
#define	DAC_BI		0x0010	/* Bipolar input range 1 = bipolar */
#define	DAC_RA		0x0020	/* Input range 0 = 5V, 1 = 10V */

/*  Define bits from interrupt enable/status registers */
#define	ADC_READY	0x0001	/* A/d conversion ready interrupt */
#define	DAC_READY	0x0002	/* D/a conversion ready interrupt */
#define	DOUT_ERROR	0x0004	/* Digital output error interrupt */
#define	DIN_STATUS	0x0008	/* Digital input status change interrupt */
#define	CIE0		0x0010	/* Counter 0 overrun interrupt */
#define	CIE1		0x0020	/* Counter 1 overrun interrupt */
#define	CIE2		0x0040	/* Counter 2 overrun interrupt */
#define	CIE3		0x0080	/* Counter 3 overrun interrupt */

/*  Useful definitions */
#define	Status_IRQ	0x00ff	/*  All interrupts */

/*  Define analogue range */
static const struct comedi_lrange range_analog = {
	4, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10)
	}
};

static const char range_codes_analog[] = { 0x00, 0x20, 0x10, 0x30 };

/*
==============================================================================
	Data & Structure declarations
==============================================================================
*/

struct icp_multi_private {
	unsigned int AdcCmdStatus;	/*  ADC Command/Status register */
	unsigned int DacCmdStatus;	/*  DAC Command/Status register */
	unsigned int IntEnable;	/*  Interrupt Enable register */
	unsigned int IntStatus;	/*  Interrupt Status register */
	unsigned int act_chanlist[32];	/*  list of scanned channel */
	unsigned char act_chanlist_len;	/*  len of scanlist */
	unsigned char act_chanlist_pos;	/*  actual position in MUX list */
	unsigned int *ai_chanlist;	/*  actaul chanlist */
	unsigned int do_data;	/*  Remember digital output data */
};

static void setup_channel_list(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       unsigned int *chanlist, unsigned int n_chan)
{
	struct icp_multi_private *devpriv = dev->private;
	unsigned int i, range, chanprog;
	unsigned int diff;

	devpriv->act_chanlist_len = n_chan;
	devpriv->act_chanlist_pos = 0;

	for (i = 0; i < n_chan; i++) {
		/*  Get channel */
		chanprog = CR_CHAN(chanlist[i]);

		/*  Determine if it is a differential channel (Bit 15  = 1) */
		if (CR_AREF(chanlist[i]) == AREF_DIFF) {
			diff = 1;
			chanprog &= 0x0007;
		} else {
			diff = 0;
			chanprog &= 0x000f;
		}

		/*  Clear channel, range and input mode bits
		 *  in A/D command/status register */
		devpriv->AdcCmdStatus &= 0xf00f;

		/*  Set channel number and differential mode status bit */
		if (diff) {
			/*  Set channel number, bits 9-11 & mode, bit 6 */
			devpriv->AdcCmdStatus |= (chanprog << 9);
			devpriv->AdcCmdStatus |= ADC_DI;
		} else
			/*  Set channel number, bits 8-11 */
			devpriv->AdcCmdStatus |= (chanprog << 8);

		/*  Get range for current channel */
		range = range_codes_analog[CR_RANGE(chanlist[i])];
		/*  Set range. bits 4-5 */
		devpriv->AdcCmdStatus |= range;

		/* Output channel, range, mode to ICP Multi */
		writew(devpriv->AdcCmdStatus, dev->mmio + ICP_MULTI_ADC_CSR);
	}
}

static int icp_multi_ai_eoc(struct comedi_device *dev,
			    struct comedi_subdevice *s,
			    struct comedi_insn *insn,
			    unsigned long context)
{
	unsigned int status;

	status = readw(dev->mmio + ICP_MULTI_ADC_CSR);
	if ((status & ADC_BSY) == 0)
		return 0;
	return -EBUSY;
}

static int icp_multi_insn_read_ai(struct comedi_device *dev,
				  struct comedi_subdevice *s,
				  struct comedi_insn *insn,
				  unsigned int *data)
{
	struct icp_multi_private *devpriv = dev->private;
	int ret = 0;
	int n;

	/*  Disable A/D conversion ready interrupt */
	devpriv->IntEnable &= ~ADC_READY;
	writew(devpriv->IntEnable, dev->mmio + ICP_MULTI_INT_EN);

	/*  Clear interrupt status */
	devpriv->IntStatus |= ADC_READY;
	writew(devpriv->IntStatus, dev->mmio + ICP_MULTI_INT_STAT);

	/*  Set up appropriate channel, mode and range data, for specified ch */
	setup_channel_list(dev, s, &insn->chanspec, 1);

	for (n = 0; n < insn->n; n++) {
		/*  Set start ADC bit */
		devpriv->AdcCmdStatus |= ADC_ST;
		writew(devpriv->AdcCmdStatus, dev->mmio + ICP_MULTI_ADC_CSR);
		devpriv->AdcCmdStatus &= ~ADC_ST;

		udelay(1);

		/*  Wait for conversion to complete, or get fed up waiting */
		ret = comedi_timeout(dev, s, insn, icp_multi_ai_eoc, 0);
		if (ret)
			break;

		data[n] = (readw(dev->mmio + ICP_MULTI_AI) >> 4) & 0x0fff;
	}

	/*  Disable interrupt */
	devpriv->IntEnable &= ~ADC_READY;
	writew(devpriv->IntEnable, dev->mmio + ICP_MULTI_INT_EN);

	/*  Clear interrupt status */
	devpriv->IntStatus |= ADC_READY;
	writew(devpriv->IntStatus, dev->mmio + ICP_MULTI_INT_STAT);

	return ret ? ret : n;
}

static int icp_multi_ao_eoc(struct comedi_device *dev,
			    struct comedi_subdevice *s,
			    struct comedi_insn *insn,
			    unsigned long context)
{
	unsigned int status;

	status = readw(dev->mmio + ICP_MULTI_DAC_CSR);
	if ((status & DAC_BSY) == 0)
		return 0;
	return -EBUSY;
}

static int icp_multi_ao_insn_write(struct comedi_device *dev,
				   struct comedi_subdevice *s,
				   struct comedi_insn *insn,
				   unsigned int *data)
{
	struct icp_multi_private *devpriv = dev->private;
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int range = CR_RANGE(insn->chanspec);
	int i;

	/*  Disable D/A conversion ready interrupt */
	devpriv->IntEnable &= ~DAC_READY;
	writew(devpriv->IntEnable, dev->mmio + ICP_MULTI_INT_EN);

	/*  Clear interrupt status */
	devpriv->IntStatus |= DAC_READY;
	writew(devpriv->IntStatus, dev->mmio + ICP_MULTI_INT_STAT);

	/*  Set up range and channel data */
	/*  Bit 4 = 1 : Bipolar */
	/*  Bit 5 = 0 : 5V */
	/*  Bit 5 = 1 : 10V */
	/*  Bits 8-9 : Channel number */
	devpriv->DacCmdStatus &= 0xfccf;
	devpriv->DacCmdStatus |= range_codes_analog[range];
	devpriv->DacCmdStatus |= (chan << 8);

	writew(devpriv->DacCmdStatus, dev->mmio + ICP_MULTI_DAC_CSR);

	for (i = 0; i < insn->n; i++) {
		unsigned int val = data[i];
		int ret;

		/*  Wait for analogue output data register to be
		 *  ready for new data, or get fed up waiting */
		ret = comedi_timeout(dev, s, insn, icp_multi_ao_eoc, 0);
		if (ret) {
			/*  Disable interrupt */
			devpriv->IntEnable &= ~DAC_READY;
			writew(devpriv->IntEnable,
			       dev->mmio + ICP_MULTI_INT_EN);

			/*  Clear interrupt status */
			devpriv->IntStatus |= DAC_READY;
			writew(devpriv->IntStatus,
			       dev->mmio + ICP_MULTI_INT_STAT);

			return ret;
		}

		writew(val, dev->mmio + ICP_MULTI_AO);

		/*  Set DAC_ST bit to write the data to selected channel */
		devpriv->DacCmdStatus |= DAC_ST;
		writew(devpriv->DacCmdStatus, dev->mmio + ICP_MULTI_DAC_CSR);
		devpriv->DacCmdStatus &= ~DAC_ST;

		s->readback[chan] = val;
	}

	return insn->n;
}

static int icp_multi_insn_bits_di(struct comedi_device *dev,
				  struct comedi_subdevice *s,
				  struct comedi_insn *insn,
				  unsigned int *data)
{
	data[1] = readw(dev->mmio + ICP_MULTI_DI);

	return insn->n;
}

static int icp_multi_insn_bits_do(struct comedi_device *dev,
				  struct comedi_subdevice *s,
				  struct comedi_insn *insn,
				  unsigned int *data)
{
	if (comedi_dio_update_state(s, data))
		writew(s->state, dev->mmio + ICP_MULTI_DO);

	data[1] = s->state;

	return insn->n;
}

static int icp_multi_insn_read_ctr(struct comedi_device *dev,
				   struct comedi_subdevice *s,
				   struct comedi_insn *insn, unsigned int *data)
{
	return 0;
}

static int icp_multi_insn_write_ctr(struct comedi_device *dev,
				    struct comedi_subdevice *s,
				    struct comedi_insn *insn,
				    unsigned int *data)
{
	return 0;
}

static irqreturn_t interrupt_service_icp_multi(int irq, void *d)
{
	struct comedi_device *dev = d;
	int int_no;

	/*  Is this interrupt from our board? */
	int_no = readw(dev->mmio + ICP_MULTI_INT_STAT) & Status_IRQ;
	if (!int_no)
		/*  No, exit */
		return IRQ_NONE;

	/*  Determine which interrupt is active & handle it */
	switch (int_no) {
	case ADC_READY:
		break;
	case DAC_READY:
		break;
	case DOUT_ERROR:
		break;
	case DIN_STATUS:
		break;
	case CIE0:
		break;
	case CIE1:
		break;
	case CIE2:
		break;
	case CIE3:
		break;
	default:
		break;

	}

	return IRQ_HANDLED;
}

#if 0
static int check_channel_list(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      unsigned int *chanlist, unsigned int n_chan)
{
	unsigned int i;

	/*  Check that we at least have one channel to check */
	if (n_chan < 1) {
		dev_err(dev->class_dev, "range/channel list is empty!\n");
		return 0;
	}
	/*  Check all channels */
	for (i = 0; i < n_chan; i++) {
		/*  Check that channel number is < maximum */
		if (CR_AREF(chanlist[i]) == AREF_DIFF) {
			if (CR_CHAN(chanlist[i]) > (s->nchan / 2)) {
				dev_err(dev->class_dev,
					"Incorrect differential ai ch-nr\n");
				return 0;
			}
		} else {
			if (CR_CHAN(chanlist[i]) > s->n_chan) {
				dev_err(dev->class_dev,
					"Incorrect ai channel number\n");
				return 0;
			}
		}
	}
	return 1;
}
#endif

static int icp_multi_reset(struct comedi_device *dev)
{
	struct icp_multi_private *devpriv = dev->private;
	unsigned int i;

	/*  Clear INT enables and requests */
	writew(0, dev->mmio + ICP_MULTI_INT_EN);
	writew(0x00ff, dev->mmio + ICP_MULTI_INT_STAT);

	/* Set DACs to 0..5V range and 0V output */
	for (i = 0; i < 4; i++) {
		devpriv->DacCmdStatus &= 0xfcce;

		/*  Set channel number */
		devpriv->DacCmdStatus |= (i << 8);

		/*  Output 0V */
		writew(0, dev->mmio + ICP_MULTI_AO);

		/*  Set start conversion bit */
		devpriv->DacCmdStatus |= DAC_ST;

		/*  Output to command / status register */
		writew(devpriv->DacCmdStatus, dev->mmio + ICP_MULTI_DAC_CSR);

		/*  Delay to allow DAC time to recover */
		udelay(1);
	}

	/* Digital outputs to 0 */
	writew(0, dev->mmio + ICP_MULTI_DO);

	return 0;
}

static int icp_multi_auto_attach(struct comedi_device *dev,
					   unsigned long context_unused)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	struct icp_multi_private *devpriv;
	struct comedi_subdevice *s;
	int ret;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	ret = comedi_pci_enable(dev);
	if (ret)
		return ret;

	dev->mmio = pci_ioremap_bar(pcidev, 2);
	if (!dev->mmio)
		return -ENOMEM;

	ret = comedi_alloc_subdevices(dev, 5);
	if (ret)
		return ret;

	icp_multi_reset(dev);

	if (pcidev->irq) {
		ret = request_irq(pcidev->irq, interrupt_service_icp_multi,
				  IRQF_SHARED, dev->board_name, dev);
		if (ret == 0)
			dev->irq = pcidev->irq;
	}

	s = &dev->subdevices[0];
	dev->read_subdev = s;
	s->type = COMEDI_SUBD_AI;
	s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_GROUND | SDF_DIFF;
	s->n_chan = 16;
	s->maxdata = 0x0fff;
	s->len_chanlist = 16;
	s->range_table = &range_analog;
	s->insn_read = icp_multi_insn_read_ai;

	s = &dev->subdevices[1];
	s->type = COMEDI_SUBD_AO;
	s->subdev_flags = SDF_WRITABLE | SDF_GROUND | SDF_COMMON;
	s->n_chan = 4;
	s->maxdata = 0x0fff;
	s->len_chanlist = 4;
	s->range_table = &range_analog;
	s->insn_write = icp_multi_ao_insn_write;

	ret = comedi_alloc_subdev_readback(s);
	if (ret)
		return ret;

	s = &dev->subdevices[2];
	s->type = COMEDI_SUBD_DI;
	s->subdev_flags = SDF_READABLE;
	s->n_chan = 16;
	s->maxdata = 1;
	s->len_chanlist = 16;
	s->range_table = &range_digital;
	s->insn_bits = icp_multi_insn_bits_di;

	s = &dev->subdevices[3];
	s->type = COMEDI_SUBD_DO;
	s->subdev_flags = SDF_WRITABLE;
	s->n_chan = 8;
	s->maxdata = 1;
	s->len_chanlist = 8;
	s->range_table = &range_digital;
	s->insn_bits = icp_multi_insn_bits_do;

	s = &dev->subdevices[4];
	s->type = COMEDI_SUBD_COUNTER;
	s->subdev_flags = SDF_WRITABLE;
	s->n_chan = 4;
	s->maxdata = 0xffff;
	s->len_chanlist = 4;
	s->state = 0;
	s->insn_read = icp_multi_insn_read_ctr;
	s->insn_write = icp_multi_insn_write_ctr;

	return 0;
}

static void icp_multi_detach(struct comedi_device *dev)
{
	if (dev->mmio)
		icp_multi_reset(dev);
	comedi_pci_detach(dev);
}

static struct comedi_driver icp_multi_driver = {
	.driver_name	= "icp_multi",
	.module		= THIS_MODULE,
	.auto_attach	= icp_multi_auto_attach,
	.detach		= icp_multi_detach,
};

static int icp_multi_pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *id)
{
	return comedi_pci_auto_config(dev, &icp_multi_driver, id->driver_data);
}

static const struct pci_device_id icp_multi_pci_table[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_ICP, 0x8000) },
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, icp_multi_pci_table);

static struct pci_driver icp_multi_pci_driver = {
	.name		= "icp_multi",
	.id_table	= icp_multi_pci_table,
	.probe		= icp_multi_pci_probe,
	.remove		= comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(icp_multi_driver, icp_multi_pci_driver);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");