Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
 * GPL HEADER START
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 only,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License version 2 for more details (a copy is included
 * in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU General Public License
 * version 2 along with this program; If not, see
 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 * GPL HEADER END
 */
/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * Copyright (c) 2011, 2012, Intel Corporation.
 */
/*
 * This file is part of Lustre, http://www.lustre.org/
 * Lustre is a trademark of Sun Microsystems, Inc.
 *
 * lustre/ptlrpc/ptlrpcd.c
 */

/** \defgroup ptlrpcd PortalRPC daemon
 *
 * ptlrpcd is a special thread with its own set where other user might add
 * requests when they don't want to wait for their completion.
 * PtlRPCD will take care of sending such requests and then processing their
 * replies and calling completion callbacks as necessary.
 * The callbacks are called directly from ptlrpcd context.
 * It is important to never significantly block (esp. on RPCs!) within such
 * completion handler or a deadlock might occur where ptlrpcd enters some
 * callback that attempts to send another RPC and wait for it to return,
 * during which time ptlrpcd is completely blocked, so e.g. if import
 * fails, recovery cannot progress because connection requests are also
 * sent by ptlrpcd.
 *
 * @{
 */

#define DEBUG_SUBSYSTEM S_RPC

#include "../../include/linux/libcfs/libcfs.h"

#include "../include/lustre_net.h"
#include "../include/lustre_lib.h"
#include "../include/lustre_ha.h"
#include "../include/obd_class.h"	/* for obd_zombie */
#include "../include/obd_support.h"	/* for OBD_FAIL_CHECK */
#include "../include/cl_object.h"	/* cl_env_{get,put}() */
#include "../include/lprocfs_status.h"

#include "ptlrpc_internal.h"

struct ptlrpcd {
	int		pd_size;
	int		pd_index;
	int		pd_nthreads;
	struct ptlrpcd_ctl pd_thread_rcv;
	struct ptlrpcd_ctl pd_threads[0];
};

static int max_ptlrpcds;
module_param(max_ptlrpcds, int, 0644);
MODULE_PARM_DESC(max_ptlrpcds, "Max ptlrpcd thread count to be started.");

static int ptlrpcd_bind_policy = PDB_POLICY_PAIR;
module_param(ptlrpcd_bind_policy, int, 0644);
MODULE_PARM_DESC(ptlrpcd_bind_policy, "Ptlrpcd threads binding mode.");
static struct ptlrpcd *ptlrpcds;

struct mutex ptlrpcd_mutex;
static int ptlrpcd_users = 0;

void ptlrpcd_wake(struct ptlrpc_request *req)
{
	struct ptlrpc_request_set *rq_set = req->rq_set;

	LASSERT(rq_set != NULL);

	wake_up(&rq_set->set_waitq);
}
EXPORT_SYMBOL(ptlrpcd_wake);

static struct ptlrpcd_ctl *
ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index)
{
	int idx = 0;

	if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
		return &ptlrpcds->pd_thread_rcv;

	switch (policy) {
	case PDL_POLICY_SAME:
		idx = smp_processor_id() % ptlrpcds->pd_nthreads;
		break;
	case PDL_POLICY_LOCAL:
		/* Before CPU partition patches available, process it the same
		 * as "PDL_POLICY_ROUND". */
# ifdef CFS_CPU_MODE_NUMA
# warning "fix this code to use new CPU partition APIs"
# endif
		/* Fall through to PDL_POLICY_ROUND until the CPU
		 * CPU partition patches are available. */
		index = -1;
	case PDL_POLICY_PREFERRED:
		if (index >= 0 && index < num_online_cpus()) {
			idx = index % ptlrpcds->pd_nthreads;
			break;
		}
		/* Fall through to PDL_POLICY_ROUND for bad index. */
	default:
		/* Fall through to PDL_POLICY_ROUND for unknown policy. */
	case PDL_POLICY_ROUND:
		/* We do not care whether it is strict load balance. */
		idx = ptlrpcds->pd_index + 1;
		if (idx == smp_processor_id())
			idx++;
		idx %= ptlrpcds->pd_nthreads;
		ptlrpcds->pd_index = idx;
		break;
	}

	return &ptlrpcds->pd_threads[idx];
}

/**
 * Move all request from an existing request set to the ptlrpcd queue.
 * All requests from the set must be in phase RQ_PHASE_NEW.
 */
void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
{
	struct list_head *tmp, *pos;
	struct ptlrpcd_ctl *pc;
	struct ptlrpc_request_set *new;
	int count, i;

	pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1);
	new = pc->pc_set;

	list_for_each_safe(pos, tmp, &set->set_requests) {
		struct ptlrpc_request *req =
			list_entry(pos, struct ptlrpc_request,
				       rq_set_chain);

		LASSERT(req->rq_phase == RQ_PHASE_NEW);
		req->rq_set = new;
		req->rq_queued_time = cfs_time_current();
	}

	spin_lock(&new->set_new_req_lock);
	list_splice_init(&set->set_requests, &new->set_new_requests);
	i = atomic_read(&set->set_remaining);
	count = atomic_add_return(i, &new->set_new_count);
	atomic_set(&set->set_remaining, 0);
	spin_unlock(&new->set_new_req_lock);
	if (count == i) {
		wake_up(&new->set_waitq);

		/* XXX: It maybe unnecessary to wakeup all the partners. But to
		 *      guarantee the async RPC can be processed ASAP, we have
		 *      no other better choice. It maybe fixed in future. */
		for (i = 0; i < pc->pc_npartners; i++)
			wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
	}
}
EXPORT_SYMBOL(ptlrpcd_add_rqset);

/**
 * Return transferred RPCs count.
 */
static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
			       struct ptlrpc_request_set *src)
{
	struct list_head *tmp, *pos;
	struct ptlrpc_request *req;
	int rc = 0;

	spin_lock(&src->set_new_req_lock);
	if (likely(!list_empty(&src->set_new_requests))) {
		list_for_each_safe(pos, tmp, &src->set_new_requests) {
			req = list_entry(pos, struct ptlrpc_request,
					     rq_set_chain);
			req->rq_set = des;
		}
		list_splice_init(&src->set_new_requests,
				     &des->set_requests);
		rc = atomic_read(&src->set_new_count);
		atomic_add(rc, &des->set_remaining);
		atomic_set(&src->set_new_count, 0);
	}
	spin_unlock(&src->set_new_req_lock);
	return rc;
}

/**
 * Requests that are added to the ptlrpcd queue are sent via
 * ptlrpcd_check->ptlrpc_check_set().
 */
void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx)
{
	struct ptlrpcd_ctl *pc;

	if (req->rq_reqmsg)
		lustre_msg_set_jobid(req->rq_reqmsg, NULL);

	spin_lock(&req->rq_lock);
	if (req->rq_invalid_rqset) {
		struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
						     back_to_sleep, NULL);

		req->rq_invalid_rqset = 0;
		spin_unlock(&req->rq_lock);
		l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
	} else if (req->rq_set) {
		/* If we have a valid "rq_set", just reuse it to avoid double
		 * linked. */
		LASSERT(req->rq_phase == RQ_PHASE_NEW);
		LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);

		/* ptlrpc_check_set will decrease the count */
		atomic_inc(&req->rq_set->set_remaining);
		spin_unlock(&req->rq_lock);
		wake_up(&req->rq_set->set_waitq);
		return;
	} else {
		spin_unlock(&req->rq_lock);
	}

	pc = ptlrpcd_select_pc(req, policy, idx);

	DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
		  req, pc->pc_name, pc->pc_index);

	ptlrpc_set_add_new_req(pc, req);
}
EXPORT_SYMBOL(ptlrpcd_add_req);

static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
{
	atomic_inc(&set->set_refcount);
}

/**
 * Check if there is more work to do on ptlrpcd set.
 * Returns 1 if yes.
 */
static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
{
	struct list_head *tmp, *pos;
	struct ptlrpc_request *req;
	struct ptlrpc_request_set *set = pc->pc_set;
	int rc = 0;
	int rc2;

	if (atomic_read(&set->set_new_count)) {
		spin_lock(&set->set_new_req_lock);
		if (likely(!list_empty(&set->set_new_requests))) {
			list_splice_init(&set->set_new_requests,
					     &set->set_requests);
			atomic_add(atomic_read(&set->set_new_count),
				       &set->set_remaining);
			atomic_set(&set->set_new_count, 0);
			/*
			 * Need to calculate its timeout.
			 */
			rc = 1;
		}
		spin_unlock(&set->set_new_req_lock);
	}

	/* We should call lu_env_refill() before handling new requests to make
	 * sure that env key the requests depending on really exists.
	 */
	rc2 = lu_env_refill(env);
	if (rc2 != 0) {
		/*
		 * XXX This is very awkward situation, because
		 * execution can neither continue (request
		 * interpreters assume that env is set up), nor repeat
		 * the loop (as this potentially results in a tight
		 * loop of -ENOMEM's).
		 *
		 * Fortunately, refill only ever does something when
		 * new modules are loaded, i.e., early during boot up.
		 */
		CERROR("Failure to refill session: %d\n", rc2);
		return rc;
	}

	if (atomic_read(&set->set_remaining))
		rc |= ptlrpc_check_set(env, set);

	if (!list_empty(&set->set_requests)) {
		/*
		 * XXX: our set never completes, so we prune the completed
		 * reqs after each iteration. boy could this be smarter.
		 */
		list_for_each_safe(pos, tmp, &set->set_requests) {
			req = list_entry(pos, struct ptlrpc_request,
					     rq_set_chain);
			if (req->rq_phase != RQ_PHASE_COMPLETE)
				continue;

			list_del_init(&req->rq_set_chain);
			req->rq_set = NULL;
			ptlrpc_req_finished(req);
		}
	}

	if (rc == 0) {
		/*
		 * If new requests have been added, make sure to wake up.
		 */
		rc = atomic_read(&set->set_new_count);

		/* If we have nothing to do, check whether we can take some
		 * work from our partner threads. */
		if (rc == 0 && pc->pc_npartners > 0) {
			struct ptlrpcd_ctl *partner;
			struct ptlrpc_request_set *ps;
			int first = pc->pc_cursor;

			do {
				partner = pc->pc_partners[pc->pc_cursor++];
				if (pc->pc_cursor >= pc->pc_npartners)
					pc->pc_cursor = 0;
				if (partner == NULL)
					continue;

				spin_lock(&partner->pc_lock);
				ps = partner->pc_set;
				if (ps == NULL) {
					spin_unlock(&partner->pc_lock);
					continue;
				}

				ptlrpc_reqset_get(ps);
				spin_unlock(&partner->pc_lock);

				if (atomic_read(&ps->set_new_count)) {
					rc = ptlrpcd_steal_rqset(set, ps);
					if (rc > 0)
						CDEBUG(D_RPCTRACE, "transfer %d async RPCs [%d->%d]\n",
						       rc, partner->pc_index,
						       pc->pc_index);
				}
				ptlrpc_reqset_put(ps);
			} while (rc == 0 && pc->pc_cursor != first);
		}
	}

	return rc;
}

/**
 * Main ptlrpcd thread.
 * ptlrpc's code paths like to execute in process context, so we have this
 * thread which spins on a set which contains the rpcs and sends them.
 *
 */
static int ptlrpcd(void *arg)
{
	struct ptlrpcd_ctl *pc = arg;
	struct ptlrpc_request_set *set = pc->pc_set;
	struct lu_env env = { .le_ses = NULL };
	int rc, exit = 0;

	unshare_fs_struct();
#if defined(CONFIG_SMP)
	if (test_bit(LIOD_BIND, &pc->pc_flags)) {
		int index = pc->pc_index;

		if (index >= 0 && index < num_possible_cpus()) {
			while (!cpu_online(index)) {
				if (++index >= num_possible_cpus())
					index = 0;
			}
			set_cpus_allowed_ptr(current,
					cpumask_of_node(cpu_to_node(index)));
		}
	}
#endif
	/*
	 * XXX So far only "client" ptlrpcd uses an environment. In
	 * the future, ptlrpcd thread (or a thread-set) has to given
	 * an argument, describing its "scope".
	 */
	rc = lu_context_init(&env.le_ctx,
			     LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF);
	complete(&pc->pc_starting);

	if (rc != 0)
		return rc;

	/*
	 * This mainloop strongly resembles ptlrpc_set_wait() except that our
	 * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
	 * there are requests in the set. New requests come in on the set's
	 * new_req_list and ptlrpcd_check() moves them into the set.
	 */
	do {
		struct l_wait_info lwi;
		int timeout;

		timeout = ptlrpc_set_next_timeout(set);
		lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
				  ptlrpc_expired_set, set);

		lu_context_enter(&env.le_ctx);
		l_wait_event(set->set_waitq,
			     ptlrpcd_check(&env, pc), &lwi);
		lu_context_exit(&env.le_ctx);

		/*
		 * Abort inflight rpcs for forced stop case.
		 */
		if (test_bit(LIOD_STOP, &pc->pc_flags)) {
			if (test_bit(LIOD_FORCE, &pc->pc_flags))
				ptlrpc_abort_set(set);
			exit++;
		}

		/*
		 * Let's make one more loop to make sure that ptlrpcd_check()
		 * copied all raced new rpcs into the set so we can kill them.
		 */
	} while (exit < 2);

	/*
	 * Wait for inflight requests to drain.
	 */
	if (!list_empty(&set->set_requests))
		ptlrpc_set_wait(set);
	lu_context_fini(&env.le_ctx);

	complete(&pc->pc_finishing);

	return 0;
}

/* XXX: We want multiple CPU cores to share the async RPC load. So we start many
 *      ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by
 *      data transfer cross-CPU cores. So we bind ptlrpcd thread to specified
 *      CPU core. But binding all ptlrpcd threads maybe cause response delay
 *      because of some CPU core(s) busy with other loads.
 *
 *      For example: "ls -l", some async RPCs for statahead are assigned to
 *      ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy
 *      with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l"
 *      thread, statahead thread, and ptlrpcd thread can run in parallel), under
 *      such case, the statahead async RPCs can not be processed in time, it is
 *      unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may
 *      be better. But it breaks former data transfer policy.
 *
 *      So we shouldn't be blind for avoiding the data transfer. We make some
 *      compromise: divide the ptlrpcd threads pool into two parts. One part is
 *      for bound mode, each ptlrpcd thread in this part is bound to some CPU
 *      core. The other part is for free mode, all the ptlrpcd threads in the
 *      part can be scheduled on any CPU core. We specify some partnership
 *      between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s),
 *      and the async RPC load within the partners are shared.
 *
 *      It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd
 *      thread can be scheduled in time), and try to guarantee the async RPC
 *      processed ASAP (as long as the free mode ptlrpcd thread can be scheduled
 *      on any CPU core).
 *
 *      As for how to specify the partnership between bound mode ptlrpcd
 *      thread(s) and free mode ptlrpcd thread(s), the simplest way is to use
 *      <free bound> pair. In future, we can specify some more complex
 *      partnership based on the patches for CPU partition. But before such
 *      patches are available, we prefer to use the simplest one.
 */
# ifdef CFS_CPU_MODE_NUMA
# warning "fix ptlrpcd_bind() to use new CPU partition APIs"
# endif
static int ptlrpcd_bind(int index, int max)
{
	struct ptlrpcd_ctl *pc;
	int rc = 0;
#if defined(CONFIG_NUMA)
	cpumask_t mask;
#endif

	LASSERT(index <= max - 1);
	pc = &ptlrpcds->pd_threads[index];
	switch (ptlrpcd_bind_policy) {
	case PDB_POLICY_NONE:
		pc->pc_npartners = -1;
		break;
	case PDB_POLICY_FULL:
		pc->pc_npartners = 0;
		set_bit(LIOD_BIND, &pc->pc_flags);
		break;
	case PDB_POLICY_PAIR:
		LASSERT(max % 2 == 0);
		pc->pc_npartners = 1;
		break;
	case PDB_POLICY_NEIGHBOR:
#if defined(CONFIG_NUMA)
	{
		int i;
		mask = *cpumask_of_node(cpu_to_node(index));
		for (i = max; i < num_online_cpus(); i++)
			cpu_clear(i, mask);
		pc->pc_npartners = cpus_weight(mask) - 1;
		set_bit(LIOD_BIND, &pc->pc_flags);
	}
#else
		LASSERT(max >= 3);
		pc->pc_npartners = 2;
#endif
		break;
	default:
		CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy);
		rc = -EINVAL;
	}

	if (rc == 0 && pc->pc_npartners > 0) {
		OBD_ALLOC(pc->pc_partners,
			  sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
		if (pc->pc_partners == NULL) {
			pc->pc_npartners = 0;
			rc = -ENOMEM;
		} else {
			switch (ptlrpcd_bind_policy) {
			case PDB_POLICY_PAIR:
				if (index & 0x1) {
					set_bit(LIOD_BIND, &pc->pc_flags);
					pc->pc_partners[0] = &ptlrpcds->
						pd_threads[index - 1];
					ptlrpcds->pd_threads[index - 1].
						pc_partners[0] = pc;
				}
				break;
			case PDB_POLICY_NEIGHBOR:
#if defined(CONFIG_NUMA)
			{
				struct ptlrpcd_ctl *ppc;
				int i, pidx;
				/* partners are cores in the same NUMA node.
				 * setup partnership only with ptlrpcd threads
				 * that are already initialized
				 */
				for (pidx = 0, i = 0; i < index; i++) {
					if (cpu_isset(i, mask)) {
						ppc = &ptlrpcds->pd_threads[i];
						pc->pc_partners[pidx++] = ppc;
						ppc->pc_partners[ppc->
							  pc_npartners++] = pc;
					}
				}
				/* adjust number of partners to the number
				 * of partnership really setup */
				pc->pc_npartners = pidx;
			}
#else
				if (index & 0x1)
					set_bit(LIOD_BIND, &pc->pc_flags);
				if (index > 0) {
					pc->pc_partners[0] = &ptlrpcds->
						pd_threads[index - 1];
					ptlrpcds->pd_threads[index - 1].
						pc_partners[1] = pc;
					if (index == max - 1) {
						pc->pc_partners[1] =
						&ptlrpcds->pd_threads[0];
						ptlrpcds->pd_threads[0].
						pc_partners[0] = pc;
					}
				}
#endif
				break;
			}
		}
	}

	return rc;
}


int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc)
{
	int rc;

	/*
	 * Do not allow start second thread for one pc.
	 */
	if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Starting second thread (%s) for same pc %p\n",
		      name, pc);
		return 0;
	}

	pc->pc_index = index;
	init_completion(&pc->pc_starting);
	init_completion(&pc->pc_finishing);
	spin_lock_init(&pc->pc_lock);
	strlcpy(pc->pc_name, name, sizeof(pc->pc_name));
	pc->pc_set = ptlrpc_prep_set();
	if (pc->pc_set == NULL) {
		rc = -ENOMEM;
		goto out;
	}

	/*
	 * So far only "client" ptlrpcd uses an environment. In the future,
	 * ptlrpcd thread (or a thread-set) has to be given an argument,
	 * describing its "scope".
	 */
	rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
	if (rc != 0)
		goto out_set;

	{
		struct task_struct *task;
		if (index >= 0) {
			rc = ptlrpcd_bind(index, max);
			if (rc < 0)
				goto out_env;
		}

		task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
		if (IS_ERR(task)) {
			rc = PTR_ERR(task);
			goto out_env;
		}

		wait_for_completion(&pc->pc_starting);
	}
	return 0;

out_env:
	lu_context_fini(&pc->pc_env.le_ctx);

out_set:
	if (pc->pc_set != NULL) {
		struct ptlrpc_request_set *set = pc->pc_set;

		spin_lock(&pc->pc_lock);
		pc->pc_set = NULL;
		spin_unlock(&pc->pc_lock);
		ptlrpc_set_destroy(set);
	}
	clear_bit(LIOD_BIND, &pc->pc_flags);

out:
	clear_bit(LIOD_START, &pc->pc_flags);
	return rc;
}

void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
{
	if (!test_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Thread for pc %p was not started\n", pc);
		return;
	}

	set_bit(LIOD_STOP, &pc->pc_flags);
	if (force)
		set_bit(LIOD_FORCE, &pc->pc_flags);
	wake_up(&pc->pc_set->set_waitq);
}

void ptlrpcd_free(struct ptlrpcd_ctl *pc)
{
	struct ptlrpc_request_set *set = pc->pc_set;

	if (!test_bit(LIOD_START, &pc->pc_flags)) {
		CWARN("Thread for pc %p was not started\n", pc);
		goto out;
	}

	wait_for_completion(&pc->pc_finishing);
	lu_context_fini(&pc->pc_env.le_ctx);

	spin_lock(&pc->pc_lock);
	pc->pc_set = NULL;
	spin_unlock(&pc->pc_lock);
	ptlrpc_set_destroy(set);

	clear_bit(LIOD_START, &pc->pc_flags);
	clear_bit(LIOD_STOP, &pc->pc_flags);
	clear_bit(LIOD_FORCE, &pc->pc_flags);
	clear_bit(LIOD_BIND, &pc->pc_flags);

out:
	if (pc->pc_npartners > 0) {
		LASSERT(pc->pc_partners != NULL);

		OBD_FREE(pc->pc_partners,
			 sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
		pc->pc_partners = NULL;
	}
	pc->pc_npartners = 0;
}

static void ptlrpcd_fini(void)
{
	int i;

	if (ptlrpcds != NULL) {
		for (i = 0; i < ptlrpcds->pd_nthreads; i++)
			ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0);
		for (i = 0; i < ptlrpcds->pd_nthreads; i++)
			ptlrpcd_free(&ptlrpcds->pd_threads[i]);
		ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
		ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
		OBD_FREE(ptlrpcds, ptlrpcds->pd_size);
		ptlrpcds = NULL;
	}
}

static int ptlrpcd_init(void)
{
	int nthreads = num_online_cpus();
	char name[16];
	int size, i = -1, j, rc = 0;

	if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads)
		nthreads = max_ptlrpcds;
	if (nthreads < 2)
		nthreads = 2;
	if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR)
		ptlrpcd_bind_policy = PDB_POLICY_PAIR;
	else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR)
		nthreads &= ~1; /* make sure it is even */

	size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
	OBD_ALLOC(ptlrpcds, size);
	if (ptlrpcds == NULL) {
		rc = -ENOMEM;
		goto out;
	}

	snprintf(name, sizeof(name), "ptlrpcd_rcv");
	set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags);
	rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv);
	if (rc < 0)
		goto out;

	/* XXX: We start nthreads ptlrpc daemons. Each of them can process any
	 *      non-recovery async RPC to improve overall async RPC efficiency.
	 *
	 *      But there are some issues with async I/O RPCs and async non-I/O
	 *      RPCs processed in the same set under some cases. The ptlrpcd may
	 *      be blocked by some async I/O RPC(s), then will cause other async
	 *      non-I/O RPC(s) can not be processed in time.
	 *
	 *      Maybe we should distinguish blocked async RPCs from non-blocked
	 *      async RPCs, and process them in different ptlrpcd sets to avoid
	 *      unnecessary dependency. But how to distribute async RPCs load
	 *      among all the ptlrpc daemons becomes another trouble. */
	for (i = 0; i < nthreads; i++) {
		snprintf(name, sizeof(name), "ptlrpcd_%d", i);
		rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]);
		if (rc < 0)
			goto out;
	}

	ptlrpcds->pd_size = size;
	ptlrpcds->pd_index = 0;
	ptlrpcds->pd_nthreads = nthreads;

out:
	if (rc != 0 && ptlrpcds != NULL) {
		for (j = 0; j <= i; j++)
			ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0);
		for (j = 0; j <= i; j++)
			ptlrpcd_free(&ptlrpcds->pd_threads[j]);
		ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
		ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
		OBD_FREE(ptlrpcds, size);
		ptlrpcds = NULL;
	}

	return 0;
}

int ptlrpcd_addref(void)
{
	int rc = 0;

	mutex_lock(&ptlrpcd_mutex);
	if (++ptlrpcd_users == 1)
		rc = ptlrpcd_init();
	mutex_unlock(&ptlrpcd_mutex);
	return rc;
}
EXPORT_SYMBOL(ptlrpcd_addref);

void ptlrpcd_decref(void)
{
	mutex_lock(&ptlrpcd_mutex);
	if (--ptlrpcd_users == 0)
		ptlrpcd_fini();
	mutex_unlock(&ptlrpcd_mutex);
}
EXPORT_SYMBOL(ptlrpcd_decref);
/** @} ptlrpcd */