Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/cpu.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/tick.h>
#include "cpufreq_governor.h"

/* On-demand governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(100000)
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);

static struct od_ops od_ops;

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static struct cpufreq_governor cpufreq_gov_ondemand;
#endif

static unsigned int default_powersave_bias;

static void ondemand_powersave_bias_init_cpu(int cpu)
{
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);

	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
	dbs_info->freq_lo = 0;
}

/*
 * Not all CPUs want IO time to be accounted as busy; this depends on how
 * efficient idling at a higher frequency/voltage is.
 * Pavel Machek says this is not so for various generations of AMD and old
 * Intel systems.
 * Mike Chan (android.com) claims this is also not true for ARM.
 * Because of this, whitelist specific known (series) of CPUs by default, and
 * leave all others up to the user.
 */
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
	/*
	 * For Intel, Core 2 (model 15) and later have an efficient idle.
	 */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
			boot_cpu_data.x86 == 6 &&
			boot_cpu_data.x86_model >= 15)
		return 1;
#endif
	return 0;
}

/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
		unsigned int freq_next, unsigned int relation)
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
						   policy->cpu);
	struct dbs_data *dbs_data = policy->governor_data;
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
		ondemand_powersave_bias_init_cpu(i);
	}
}

static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
{
	struct dbs_data *dbs_data = policy->governor_data;
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;

	if (od_tuners->powersave_bias)
		freq = od_ops.powersave_bias_target(policy, freq,
				CPUFREQ_RELATION_H);
	else if (policy->cur == policy->max)
		return;

	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}

/*
 * Every sampling_rate, we check, if current idle time is less than 20%
 * (default), then we try to increase frequency. Else, we adjust the frequency
 * proportional to load.
 */
static void od_check_cpu(int cpu, unsigned int load)
{
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
	struct dbs_data *dbs_data = policy->governor_data;
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;

	dbs_info->freq_lo = 0;

	/* Check for frequency increase */
	if (load > od_tuners->up_threshold) {
		/* If switching to max speed, apply sampling_down_factor */
		if (policy->cur < policy->max)
			dbs_info->rate_mult =
				od_tuners->sampling_down_factor;
		dbs_freq_increase(policy, policy->max);
	} else {
		/* Calculate the next frequency proportional to load */
		unsigned int freq_next, min_f, max_f;

		min_f = policy->cpuinfo.min_freq;
		max_f = policy->cpuinfo.max_freq;
		freq_next = min_f + load * (max_f - min_f) / 100;

		/* No longer fully busy, reset rate_mult */
		dbs_info->rate_mult = 1;

		if (!od_tuners->powersave_bias) {
			__cpufreq_driver_target(policy, freq_next,
					CPUFREQ_RELATION_C);
			return;
		}

		freq_next = od_ops.powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
	}
}

static void od_dbs_timer(struct work_struct *work)
{
	struct od_cpu_dbs_info_s *dbs_info =
		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
			cpu);
	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	int delay = 0, sample_type = core_dbs_info->sample_type;
	bool modify_all = true;

	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
		modify_all = false;
		goto max_delay;
	}

	/* Common NORMAL_SAMPLE setup */
	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
	if (sample_type == OD_SUB_SAMPLE) {
		delay = core_dbs_info->freq_lo_jiffies;
		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
	} else {
		dbs_check_cpu(dbs_data, cpu);
		if (core_dbs_info->freq_lo) {
			/* Setup timer for SUB_SAMPLE */
			core_dbs_info->sample_type = OD_SUB_SAMPLE;
			delay = core_dbs_info->freq_hi_jiffies;
		}
	}

max_delay:
	if (!delay)
		delay = delay_for_sampling_rate(od_tuners->sampling_rate
				* core_dbs_info->rate_mult);

	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
}

/************************** sysfs interface ************************/
static struct common_dbs_data od_dbs_cdata;

/**
 * update_sampling_rate - update sampling rate effective immediately if needed.
 * @new_rate: new sampling rate
 *
 * If new rate is smaller than the old, simply updating
 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
 * original sampling_rate was 1 second and the requested new sampling rate is 10
 * ms because the user needs immediate reaction from ondemand governor, but not
 * sure if higher frequency will be required or not, then, the governor may
 * change the sampling rate too late; up to 1 second later. Thus, if we are
 * reducing the sampling rate, we need to make the new value effective
 * immediately.
 */
static void update_sampling_rate(struct dbs_data *dbs_data,
		unsigned int new_rate)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	int cpu;

	od_tuners->sampling_rate = new_rate = max(new_rate,
			dbs_data->min_sampling_rate);

	for_each_online_cpu(cpu) {
		struct cpufreq_policy *policy;
		struct od_cpu_dbs_info_s *dbs_info;
		unsigned long next_sampling, appointed_at;

		policy = cpufreq_cpu_get(cpu);
		if (!policy)
			continue;
		if (policy->governor != &cpufreq_gov_ondemand) {
			cpufreq_cpu_put(policy);
			continue;
		}
		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
		cpufreq_cpu_put(policy);

		mutex_lock(&dbs_info->cdbs.timer_mutex);

		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
			mutex_unlock(&dbs_info->cdbs.timer_mutex);
			continue;
		}

		next_sampling = jiffies + usecs_to_jiffies(new_rate);
		appointed_at = dbs_info->cdbs.work.timer.expires;

		if (time_before(next_sampling, appointed_at)) {

			mutex_unlock(&dbs_info->cdbs.timer_mutex);
			cancel_delayed_work_sync(&dbs_info->cdbs.work);
			mutex_lock(&dbs_info->cdbs.timer_mutex);

			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
					usecs_to_jiffies(new_rate), true);

		}
		mutex_unlock(&dbs_info->cdbs.timer_mutex);
	}
}

static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	update_sampling_rate(dbs_data, input);
	return count;
}

static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
		size_t count)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	unsigned int j;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	od_tuners->io_is_busy = !!input;

	/* we need to re-evaluate prev_cpu_idle */
	for_each_online_cpu(j) {
		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
									j);
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
	}
	return count;
}

static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
			input < MIN_FREQUENCY_UP_THRESHOLD) {
		return -EINVAL;
	}

	od_tuners->up_threshold = input;
	return count;
}

static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	unsigned int input, j;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
		return -EINVAL;
	od_tuners->sampling_down_factor = input;

	/* Reset down sampling multiplier in case it was active */
	for_each_online_cpu(j) {
		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
				j);
		dbs_info->rate_mult = 1;
	}
	return count;
}

static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
		const char *buf, size_t count)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;

	unsigned int j;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	if (input > 1)
		input = 1;

	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
		return count;
	}
	od_tuners->ignore_nice_load = input;

	/* we need to re-evaluate prev_cpu_idle */
	for_each_online_cpu(j) {
		struct od_cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
		if (od_tuners->ignore_nice_load)
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];

	}
	return count;
}

static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
		size_t count)
{
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

	od_tuners->powersave_bias = input;
	ondemand_powersave_bias_init();
	return count;
}

show_store_one(od, sampling_rate);
show_store_one(od, io_is_busy);
show_store_one(od, up_threshold);
show_store_one(od, sampling_down_factor);
show_store_one(od, ignore_nice_load);
show_store_one(od, powersave_bias);
declare_show_sampling_rate_min(od);

gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(io_is_busy);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(ignore_nice_load);
gov_sys_pol_attr_rw(powersave_bias);
gov_sys_pol_attr_ro(sampling_rate_min);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_min_gov_sys.attr,
	&sampling_rate_gov_sys.attr,
	&up_threshold_gov_sys.attr,
	&sampling_down_factor_gov_sys.attr,
	&ignore_nice_load_gov_sys.attr,
	&powersave_bias_gov_sys.attr,
	&io_is_busy_gov_sys.attr,
	NULL
};

static struct attribute_group od_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "ondemand",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_min_gov_pol.attr,
	&sampling_rate_gov_pol.attr,
	&up_threshold_gov_pol.attr,
	&sampling_down_factor_gov_pol.attr,
	&ignore_nice_load_gov_pol.attr,
	&powersave_bias_gov_pol.attr,
	&io_is_busy_gov_pol.attr,
	NULL
};

static struct attribute_group od_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
	.name = "ondemand",
};

/************************** sysfs end ************************/

static int od_init(struct dbs_data *dbs_data)
{
	struct od_dbs_tuners *tuners;
	u64 idle_time;
	int cpu;

	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	cpu = get_cpu();
	idle_time = get_cpu_idle_time_us(cpu, NULL);
	put_cpu();
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
		/*
		 * In nohz/micro accounting case we set the minimum frequency
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;

		/* For correct statistics, we need 10 ticks for each measure */
		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
			jiffies_to_usecs(10);
	}

	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	tuners->ignore_nice_load = 0;
	tuners->powersave_bias = default_powersave_bias;
	tuners->io_is_busy = should_io_be_busy();

	dbs_data->tuners = tuners;
	mutex_init(&dbs_data->mutex);
	return 0;
}

static void od_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

define_get_cpu_dbs_routines(od_cpu_dbs_info);

static struct od_ops od_ops = {
	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
	.powersave_bias_target = generic_powersave_bias_target,
	.freq_increase = dbs_freq_increase,
};

static struct common_dbs_data od_dbs_cdata = {
	.governor = GOV_ONDEMAND,
	.attr_group_gov_sys = &od_attr_group_gov_sys,
	.attr_group_gov_pol = &od_attr_group_gov_pol,
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = od_dbs_timer,
	.gov_check_cpu = od_check_cpu,
	.gov_ops = &od_ops,
	.init = od_init,
	.exit = od_exit,
};

static void od_set_powersave_bias(unsigned int powersave_bias)
{
	struct cpufreq_policy *policy;
	struct dbs_data *dbs_data;
	struct od_dbs_tuners *od_tuners;
	unsigned int cpu;
	cpumask_t done;

	default_powersave_bias = powersave_bias;
	cpumask_clear(&done);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (cpumask_test_cpu(cpu, &done))
			continue;

		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
		if (!policy)
			continue;

		cpumask_or(&done, &done, policy->cpus);

		if (policy->governor != &cpufreq_gov_ondemand)
			continue;

		dbs_data = policy->governor_data;
		od_tuners = dbs_data->tuners;
		od_tuners->powersave_bias = default_powersave_bias;
	}
	put_online_cpus();
}

void od_register_powersave_bias_handler(unsigned int (*f)
		(struct cpufreq_policy *, unsigned int, unsigned int),
		unsigned int powersave_bias)
{
	od_ops.powersave_bias_target = f;
	od_set_powersave_bias(powersave_bias);
}
EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);

void od_unregister_powersave_bias_handler(void)
{
	od_ops.powersave_bias_target = generic_powersave_bias_target;
	od_set_powersave_bias(0);
}
EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);

static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
		unsigned int event)
{
	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
}

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
	.name			= "ondemand",
	.governor		= od_cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_ondemand);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
}

MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
	"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);