Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
/*
 * fs/f2fs/f2fs.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H

#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
#include <linux/sched.h>

#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
#define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
#else
#define f2fs_bug_on(sbi, condition)					\
	do {								\
		if (unlikely(condition)) {				\
			WARN_ON(1);					\
			sbi->need_fsck = true;				\
		}							\
	} while (0)
#define f2fs_down_write(x, y)	down_write(x)
#endif

/*
 * For mount options
 */
#define F2FS_MOUNT_BG_GC		0x00000001
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
#define F2FS_MOUNT_DISCARD		0x00000004
#define F2FS_MOUNT_NOHEAP		0x00000008
#define F2FS_MOUNT_XATTR_USER		0x00000010
#define F2FS_MOUNT_POSIX_ACL		0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
#define F2FS_MOUNT_INLINE_XATTR		0x00000080
#define F2FS_MOUNT_INLINE_DATA		0x00000100
#define F2FS_MOUNT_FLUSH_MERGE		0x00000200
#define F2FS_MOUNT_NOBARRIER		0x00000400

#define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)

#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
		typecheck(unsigned long long, b) &&			\
		((long long)((a) - (b)) > 0))

typedef u32 block_t;	/*
			 * should not change u32, since it is the on-disk block
			 * address format, __le32.
			 */
typedef u32 nid_t;

struct f2fs_mount_info {
	unsigned int	opt;
};

#define CRCPOLY_LE 0xedb88320

static inline __u32 f2fs_crc32(void *buf, size_t len)
{
	unsigned char *p = (unsigned char *)buf;
	__u32 crc = F2FS_SUPER_MAGIC;
	int i;

	while (len--) {
		crc ^= *p++;
		for (i = 0; i < 8; i++)
			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
	}
	return crc;
}

static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
{
	return f2fs_crc32(buf, buf_size) == blk_crc;
}

/*
 * For checkpoint manager
 */
enum {
	NAT_BITMAP,
	SIT_BITMAP
};

enum {
	CP_UMOUNT,
	CP_SYNC,
	CP_DISCARD,
};

struct cp_control {
	int reason;
	__u64 trim_start;
	__u64 trim_end;
	__u64 trim_minlen;
	__u64 trimmed;
};

/*
 * For CP/NAT/SIT/SSA readahead
 */
enum {
	META_CP,
	META_NAT,
	META_SIT,
	META_SSA,
	META_POR,
};

/* for the list of ino */
enum {
	ORPHAN_INO,		/* for orphan ino list */
	APPEND_INO,		/* for append ino list */
	UPDATE_INO,		/* for update ino list */
	MAX_INO_ENTRY,		/* max. list */
};

struct ino_entry {
	struct list_head list;	/* list head */
	nid_t ino;		/* inode number */
};

/* for the list of directory inodes */
struct dir_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
};

/* for the list of blockaddresses to be discarded */
struct discard_entry {
	struct list_head list;	/* list head */
	block_t blkaddr;	/* block address to be discarded */
	int len;		/* # of consecutive blocks of the discard */
};

/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
	block_t blkaddr;	/* block address locating the last fsync */
	block_t last_dentry;	/* block address locating the last dentry */
	block_t last_inode;	/* block address locating the last inode */
};

#define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
#define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))

#define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
#define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
#define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
#define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)

#define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
#define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))

static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = nats_in_cursum(rs);
	rs->n_nats = cpu_to_le16(before + i);
	return before;
}

static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = sits_in_cursum(rs);
	rs->n_sits = cpu_to_le16(before + i);
	return before;
}

static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
								int type)
{
	if (type == NAT_JOURNAL)
		return size <= MAX_NAT_JENTRIES(sum);
	return size <= MAX_SIT_JENTRIES(sum);
}

/*
 * ioctl commands
 */
#define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
#define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS

#define F2FS_IOCTL_MAGIC		0xf5
#define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
#define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
#define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)

#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
/*
 * ioctl commands in 32 bit emulation
 */
#define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
#define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
#endif

/*
 * For INODE and NODE manager
 */
/*
 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 * as its node offset to distinguish from index node blocks.
 * But some bits are used to mark the node block.
 */
#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
				>> OFFSET_BIT_SHIFT)
enum {
	ALLOC_NODE,			/* allocate a new node page if needed */
	LOOKUP_NODE,			/* look up a node without readahead */
	LOOKUP_NODE_RA,			/*
					 * look up a node with readahead called
					 * by get_data_block.
					 */
};

#define F2FS_LINK_MAX		32000	/* maximum link count per file */

#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */

/* for in-memory extent cache entry */
#define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */

struct extent_info {
	rwlock_t ext_lock;	/* rwlock for consistency */
	unsigned int fofs;	/* start offset in a file */
	u32 blk_addr;		/* start block address of the extent */
	unsigned int len;	/* length of the extent */
};

/*
 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 */
#define FADVISE_COLD_BIT	0x01
#define FADVISE_LOST_PINO_BIT	0x02

#define DEF_DIR_LEVEL		0

struct f2fs_inode_info {
	struct inode vfs_inode;		/* serve a vfs inode */
	unsigned long i_flags;		/* keep an inode flags for ioctl */
	unsigned char i_advise;		/* use to give file attribute hints */
	unsigned char i_dir_level;	/* use for dentry level for large dir */
	unsigned int i_current_depth;	/* use only in directory structure */
	unsigned int i_pino;		/* parent inode number */
	umode_t i_acl_mode;		/* keep file acl mode temporarily */

	/* Use below internally in f2fs*/
	unsigned long flags;		/* use to pass per-file flags */
	struct rw_semaphore i_sem;	/* protect fi info */
	atomic_t dirty_pages;		/* # of dirty pages */
	f2fs_hash_t chash;		/* hash value of given file name */
	unsigned int clevel;		/* maximum level of given file name */
	nid_t i_xattr_nid;		/* node id that contains xattrs */
	unsigned long long xattr_ver;	/* cp version of xattr modification */
	struct extent_info ext;		/* in-memory extent cache entry */
	struct dir_inode_entry *dirty_dir;	/* the pointer of dirty dir */

	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
	struct mutex inmem_lock;	/* lock for inmemory pages */
};

static inline void get_extent_info(struct extent_info *ext,
					struct f2fs_extent i_ext)
{
	write_lock(&ext->ext_lock);
	ext->fofs = le32_to_cpu(i_ext.fofs);
	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
	ext->len = le32_to_cpu(i_ext.len);
	write_unlock(&ext->ext_lock);
}

static inline void set_raw_extent(struct extent_info *ext,
					struct f2fs_extent *i_ext)
{
	read_lock(&ext->ext_lock);
	i_ext->fofs = cpu_to_le32(ext->fofs);
	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
	i_ext->len = cpu_to_le32(ext->len);
	read_unlock(&ext->ext_lock);
}

struct f2fs_nm_info {
	block_t nat_blkaddr;		/* base disk address of NAT */
	nid_t max_nid;			/* maximum possible node ids */
	nid_t available_nids;		/* maximum available node ids */
	nid_t next_scan_nid;		/* the next nid to be scanned */
	unsigned int ram_thresh;	/* control the memory footprint */

	/* NAT cache management */
	struct radix_tree_root nat_root;/* root of the nat entry cache */
	struct radix_tree_root nat_set_root;/* root of the nat set cache */
	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
	struct list_head nat_entries;	/* cached nat entry list (clean) */
	unsigned int nat_cnt;		/* the # of cached nat entries */
	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */

	/* free node ids management */
	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
	struct list_head free_nid_list;	/* a list for free nids */
	spinlock_t free_nid_list_lock;	/* protect free nid list */
	unsigned int fcnt;		/* the number of free node id */
	struct mutex build_lock;	/* lock for build free nids */

	/* for checkpoint */
	char *nat_bitmap;		/* NAT bitmap pointer */
	int bitmap_size;		/* bitmap size */
};

/*
 * this structure is used as one of function parameters.
 * all the information are dedicated to a given direct node block determined
 * by the data offset in a file.
 */
struct dnode_of_data {
	struct inode *inode;		/* vfs inode pointer */
	struct page *inode_page;	/* its inode page, NULL is possible */
	struct page *node_page;		/* cached direct node page */
	nid_t nid;			/* node id of the direct node block */
	unsigned int ofs_in_node;	/* data offset in the node page */
	bool inode_page_locked;		/* inode page is locked or not */
	block_t	data_blkaddr;		/* block address of the node block */
};

static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
		struct page *ipage, struct page *npage, nid_t nid)
{
	memset(dn, 0, sizeof(*dn));
	dn->inode = inode;
	dn->inode_page = ipage;
	dn->node_page = npage;
	dn->nid = nid;
}

/*
 * For SIT manager
 *
 * By default, there are 6 active log areas across the whole main area.
 * When considering hot and cold data separation to reduce cleaning overhead,
 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 * respectively.
 * In the current design, you should not change the numbers intentionally.
 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 * logs individually according to the underlying devices. (default: 6)
 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 * data and 8 for node logs.
 */
#define	NR_CURSEG_DATA_TYPE	(3)
#define NR_CURSEG_NODE_TYPE	(3)
#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)

enum {
	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
	CURSEG_WARM_DATA,	/* data blocks */
	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
	CURSEG_COLD_NODE,	/* indirect node blocks */
	NO_CHECK_TYPE
};

struct flush_cmd {
	struct completion wait;
	struct llist_node llnode;
	int ret;
};

struct flush_cmd_control {
	struct task_struct *f2fs_issue_flush;	/* flush thread */
	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
	struct llist_head issue_list;		/* list for command issue */
	struct llist_node *dispatch_list;	/* list for command dispatch */
};

struct f2fs_sm_info {
	struct sit_info *sit_info;		/* whole segment information */
	struct free_segmap_info *free_info;	/* free segment information */
	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
	struct curseg_info *curseg_array;	/* active segment information */

	block_t seg0_blkaddr;		/* block address of 0'th segment */
	block_t main_blkaddr;		/* start block address of main area */
	block_t ssa_blkaddr;		/* start block address of SSA area */

	unsigned int segment_count;	/* total # of segments */
	unsigned int main_segments;	/* # of segments in main area */
	unsigned int reserved_segments;	/* # of reserved segments */
	unsigned int ovp_segments;	/* # of overprovision segments */

	/* a threshold to reclaim prefree segments */
	unsigned int rec_prefree_segments;

	/* for small discard management */
	struct list_head discard_list;		/* 4KB discard list */
	int nr_discards;			/* # of discards in the list */
	int max_discards;			/* max. discards to be issued */

	struct list_head sit_entry_set;	/* sit entry set list */

	unsigned int ipu_policy;	/* in-place-update policy */
	unsigned int min_ipu_util;	/* in-place-update threshold */
	unsigned int min_fsync_blocks;	/* threshold for fsync */

	/* for flush command control */
	struct flush_cmd_control *cmd_control_info;

};

/*
 * For superblock
 */
/*
 * COUNT_TYPE for monitoring
 *
 * f2fs monitors the number of several block types such as on-writeback,
 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 */
enum count_type {
	F2FS_WRITEBACK,
	F2FS_DIRTY_DENTS,
	F2FS_DIRTY_NODES,
	F2FS_DIRTY_META,
	NR_COUNT_TYPE,
};

/*
 * The below are the page types of bios used in submit_bio().
 * The available types are:
 * DATA			User data pages. It operates as async mode.
 * NODE			Node pages. It operates as async mode.
 * META			FS metadata pages such as SIT, NAT, CP.
 * NR_PAGE_TYPE		The number of page types.
 * META_FLUSH		Make sure the previous pages are written
 *			with waiting the bio's completion
 * ...			Only can be used with META.
 */
#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
enum page_type {
	DATA,
	NODE,
	META,
	NR_PAGE_TYPE,
	META_FLUSH,
};

struct f2fs_io_info {
	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
};

#define is_read_io(rw)	(((rw) & 1) == READ)
struct f2fs_bio_info {
	struct f2fs_sb_info *sbi;	/* f2fs superblock */
	struct bio *bio;		/* bios to merge */
	sector_t last_block_in_bio;	/* last block number */
	struct f2fs_io_info fio;	/* store buffered io info. */
	struct rw_semaphore io_rwsem;	/* blocking op for bio */
};

struct f2fs_sb_info {
	struct super_block *sb;			/* pointer to VFS super block */
	struct proc_dir_entry *s_proc;		/* proc entry */
	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
	struct f2fs_super_block *raw_super;	/* raw super block pointer */
	int s_dirty;				/* dirty flag for checkpoint */
	bool need_fsck;				/* need fsck.f2fs to fix */

	/* for node-related operations */
	struct f2fs_nm_info *nm_info;		/* node manager */
	struct inode *node_inode;		/* cache node blocks */

	/* for segment-related operations */
	struct f2fs_sm_info *sm_info;		/* segment manager */

	/* for bio operations */
	struct f2fs_bio_info read_io;			/* for read bios */
	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
	struct completion *wait_io;		/* for completion bios */

	/* for checkpoint */
	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
	struct inode *meta_inode;		/* cache meta blocks */
	struct mutex cp_mutex;			/* checkpoint procedure lock */
	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
	struct rw_semaphore node_write;		/* locking node writes */
	struct mutex writepages;		/* mutex for writepages() */
	bool por_doing;				/* recovery is doing or not */
	wait_queue_head_t cp_wait;

	/* for inode management */
	struct radix_tree_root ino_root[MAX_INO_ENTRY];	/* ino entry array */
	spinlock_t ino_lock[MAX_INO_ENTRY];		/* for ino entry lock */
	struct list_head ino_list[MAX_INO_ENTRY];	/* inode list head */

	/* for orphan inode, use 0'th array */
	unsigned int n_orphans;			/* # of orphan inodes */
	unsigned int max_orphans;		/* max orphan inodes */

	/* for directory inode management */
	struct list_head dir_inode_list;	/* dir inode list */
	spinlock_t dir_inode_lock;		/* for dir inode list lock */

	/* basic filesystem units */
	unsigned int log_sectors_per_block;	/* log2 sectors per block */
	unsigned int log_blocksize;		/* log2 block size */
	unsigned int blocksize;			/* block size */
	unsigned int root_ino_num;		/* root inode number*/
	unsigned int node_ino_num;		/* node inode number*/
	unsigned int meta_ino_num;		/* meta inode number*/
	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
	unsigned int blocks_per_seg;		/* blocks per segment */
	unsigned int segs_per_sec;		/* segments per section */
	unsigned int secs_per_zone;		/* sections per zone */
	unsigned int total_sections;		/* total section count */
	unsigned int total_node_count;		/* total node block count */
	unsigned int total_valid_node_count;	/* valid node block count */
	unsigned int total_valid_inode_count;	/* valid inode count */
	int active_logs;			/* # of active logs */
	int dir_level;				/* directory level */

	block_t user_block_count;		/* # of user blocks */
	block_t total_valid_block_count;	/* # of valid blocks */
	block_t alloc_valid_block_count;	/* # of allocated blocks */
	block_t last_valid_block_count;		/* for recovery */
	u32 s_next_generation;			/* for NFS support */
	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */

	struct f2fs_mount_info mount_opt;	/* mount options */

	/* for cleaning operations */
	struct mutex gc_mutex;			/* mutex for GC */
	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
	unsigned int cur_victim_sec;		/* current victim section num */

	/* maximum # of trials to find a victim segment for SSR and GC */
	unsigned int max_victim_search;

	/*
	 * for stat information.
	 * one is for the LFS mode, and the other is for the SSR mode.
	 */
#ifdef CONFIG_F2FS_STAT_FS
	struct f2fs_stat_info *stat_info;	/* FS status information */
	unsigned int segment_count[2];		/* # of allocated segments */
	unsigned int block_count[2];		/* # of allocated blocks */
	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
	int inline_inode;			/* # of inline_data inodes */
	int bg_gc;				/* background gc calls */
	unsigned int n_dirty_dirs;		/* # of dir inodes */
#endif
	unsigned int last_victim[2];		/* last victim segment # */
	spinlock_t stat_lock;			/* lock for stat operations */

	/* For sysfs suppport */
	struct kobject s_kobj;
	struct completion s_kobj_unregister;
};

/*
 * Inline functions
 */
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
	return container_of(inode, struct f2fs_inode_info, vfs_inode);
}

static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
	return sb->s_fs_info;
}

static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
{
	return F2FS_SB(inode->i_sb);
}

static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
{
	return F2FS_I_SB(mapping->host);
}

static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
	return F2FS_M_SB(page->mapping);
}

static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_super_block *)(sbi->raw_super);
}

static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_checkpoint *)(sbi->ckpt);
}

static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
	return (struct f2fs_node *)page_address(page);
}

static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
	return &((struct f2fs_node *)page_address(page))->i;
}

static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_nm_info *)(sbi->nm_info);
}

static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_sm_info *)(sbi->sm_info);
}

static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
	return (struct sit_info *)(SM_I(sbi)->sit_info);
}

static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}

static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}

static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->meta_inode->i_mapping;
}

static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->node_inode->i_mapping;
}

static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 1;
}

static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 0;
}

static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
	return le64_to_cpu(cp->checkpoint_ver);
}

static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	return ckpt_flags & f;
}

static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags |= f;
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags &= (~f);
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
{
	down_read(&sbi->cp_rwsem);
}

static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
{
	up_read(&sbi->cp_rwsem);
}

static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
{
	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
}

static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
{
	up_write(&sbi->cp_rwsem);
}

/*
 * Check whether the given nid is within node id range.
 */
static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
{
	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
		return -EINVAL;
	if (unlikely(nid >= NM_I(sbi)->max_nid))
		return -EINVAL;
	return 0;
}

#define F2FS_DEFAULT_ALLOCATED_BLOCKS	1

/*
 * Check whether the inode has blocks or not
 */
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
	if (F2FS_I(inode)->i_xattr_nid)
		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
	else
		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
}

static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
	return ofs == XATTR_NODE_OFFSET;
}

static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
				 struct inode *inode, blkcnt_t count)
{
	block_t	valid_block_count;

	spin_lock(&sbi->stat_lock);
	valid_block_count =
		sbi->total_valid_block_count + (block_t)count;
	if (unlikely(valid_block_count > sbi->user_block_count)) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}
	inode->i_blocks += count;
	sbi->total_valid_block_count = valid_block_count;
	sbi->alloc_valid_block_count += (block_t)count;
	spin_unlock(&sbi->stat_lock);
	return true;
}

static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
						struct inode *inode,
						blkcnt_t count)
{
	spin_lock(&sbi->stat_lock);
	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
	f2fs_bug_on(sbi, inode->i_blocks < count);
	inode->i_blocks -= count;
	sbi->total_valid_block_count -= (block_t)count;
	spin_unlock(&sbi->stat_lock);
}

static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_inc(&sbi->nr_pages[count_type]);
	F2FS_SET_SB_DIRT(sbi);
}

static inline void inode_inc_dirty_pages(struct inode *inode)
{
	atomic_inc(&F2FS_I(inode)->dirty_pages);
	if (S_ISDIR(inode->i_mode))
		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
}

static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_dec(&sbi->nr_pages[count_type]);
}

static inline void inode_dec_dirty_pages(struct inode *inode)
{
	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
		return;

	atomic_dec(&F2FS_I(inode)->dirty_pages);

	if (S_ISDIR(inode->i_mode))
		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
}

static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
{
	return atomic_read(&sbi->nr_pages[count_type]);
}

static inline int get_dirty_pages(struct inode *inode)
{
	return atomic_read(&F2FS_I(inode)->dirty_pages);
}

static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
	unsigned int pages_per_sec = sbi->segs_per_sec *
					(1 << sbi->log_blocks_per_seg);
	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
}

static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
	return sbi->total_valid_block_count;
}

static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);

	/* return NAT or SIT bitmap */
	if (flag == NAT_BITMAP)
		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
	else if (flag == SIT_BITMAP)
		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);

	return 0;
}

static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
	int offset;

	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
		if (flag == NAT_BITMAP)
			return &ckpt->sit_nat_version_bitmap;
		else
			return (unsigned char *)ckpt + F2FS_BLKSIZE;
	} else {
		offset = (flag == NAT_BITMAP) ?
			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
		return &ckpt->sit_nat_version_bitmap + offset;
	}
}

static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
	block_t start_addr;
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
	unsigned long long ckpt_version = cur_cp_version(ckpt);

	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);

	/*
	 * odd numbered checkpoint should at cp segment 0
	 * and even segment must be at cp segment 1
	 */
	if (!(ckpt_version & 1))
		start_addr += sbi->blocks_per_seg;

	return start_addr;
}

static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
						struct inode *inode)
{
	block_t	valid_block_count;
	unsigned int valid_node_count;

	spin_lock(&sbi->stat_lock);

	valid_block_count = sbi->total_valid_block_count + 1;
	if (unlikely(valid_block_count > sbi->user_block_count)) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}

	valid_node_count = sbi->total_valid_node_count + 1;
	if (unlikely(valid_node_count > sbi->total_node_count)) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}

	if (inode)
		inode->i_blocks++;

	sbi->alloc_valid_block_count++;
	sbi->total_valid_node_count++;
	sbi->total_valid_block_count++;
	spin_unlock(&sbi->stat_lock);

	return true;
}

static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
						struct inode *inode)
{
	spin_lock(&sbi->stat_lock);

	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
	f2fs_bug_on(sbi, !inode->i_blocks);

	inode->i_blocks--;
	sbi->total_valid_node_count--;
	sbi->total_valid_block_count--;

	spin_unlock(&sbi->stat_lock);
}

static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
	return sbi->total_valid_node_count;
}

static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
	spin_lock(&sbi->stat_lock);
	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
	sbi->total_valid_inode_count++;
	spin_unlock(&sbi->stat_lock);
}

static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
	spin_lock(&sbi->stat_lock);
	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
	sbi->total_valid_inode_count--;
	spin_unlock(&sbi->stat_lock);
}

static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
{
	return sbi->total_valid_inode_count;
}

static inline void f2fs_put_page(struct page *page, int unlock)
{
	if (!page)
		return;

	if (unlock) {
		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
		unlock_page(page);
	}
	page_cache_release(page);
}

static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
	if (dn->node_page)
		f2fs_put_page(dn->node_page, 1);
	if (dn->inode_page && dn->node_page != dn->inode_page)
		f2fs_put_page(dn->inode_page, 0);
	dn->node_page = NULL;
	dn->inode_page = NULL;
}

static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
					size_t size)
{
	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
}

static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
						gfp_t flags)
{
	void *entry;
retry:
	entry = kmem_cache_alloc(cachep, flags);
	if (!entry) {
		cond_resched();
		goto retry;
	}

	return entry;
}

#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)

static inline bool IS_INODE(struct page *page)
{
	struct f2fs_node *p = F2FS_NODE(page);
	return RAW_IS_INODE(p);
}

static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}

static inline block_t datablock_addr(struct page *node_page,
		unsigned int offset)
{
	struct f2fs_node *raw_node;
	__le32 *addr_array;
	raw_node = F2FS_NODE(node_page);
	addr_array = blkaddr_in_node(raw_node);
	return le32_to_cpu(addr_array[offset]);
}

static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	return mask & *addr;
}

static inline int f2fs_set_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr |= mask;
	return ret;
}

static inline int f2fs_clear_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr &= ~mask;
	return ret;
}

/* used for f2fs_inode_info->flags */
enum {
	FI_NEW_INODE,		/* indicate newly allocated inode */
	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
	FI_INC_LINK,		/* need to increment i_nlink */
	FI_ACL_MODE,		/* indicate acl mode */
	FI_NO_ALLOC,		/* should not allocate any blocks */
	FI_UPDATE_DIR,		/* should update inode block for consistency */
	FI_DELAY_IPUT,		/* used for the recovery */
	FI_NO_EXTENT,		/* not to use the extent cache */
	FI_INLINE_XATTR,	/* used for inline xattr */
	FI_INLINE_DATA,		/* used for inline data*/
	FI_APPEND_WRITE,	/* inode has appended data */
	FI_UPDATE_WRITE,	/* inode has in-place-update data */
	FI_NEED_IPU,		/* used for ipu per file */
	FI_ATOMIC_FILE,		/* indicate atomic file */
	FI_VOLATILE_FILE,	/* indicate volatile file */
};

static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	if (!test_bit(flag, &fi->flags))
		set_bit(flag, &fi->flags);
}

static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
{
	return test_bit(flag, &fi->flags);
}

static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	if (test_bit(flag, &fi->flags))
		clear_bit(flag, &fi->flags);
}

static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
{
	fi->i_acl_mode = mode;
	set_inode_flag(fi, FI_ACL_MODE);
}

static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
		clear_inode_flag(fi, FI_ACL_MODE);
		return 1;
	}
	return 0;
}

static inline void get_inline_info(struct f2fs_inode_info *fi,
					struct f2fs_inode *ri)
{
	if (ri->i_inline & F2FS_INLINE_XATTR)
		set_inode_flag(fi, FI_INLINE_XATTR);
	if (ri->i_inline & F2FS_INLINE_DATA)
		set_inode_flag(fi, FI_INLINE_DATA);
}

static inline void set_raw_inline(struct f2fs_inode_info *fi,
					struct f2fs_inode *ri)
{
	ri->i_inline = 0;

	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
		ri->i_inline |= F2FS_INLINE_XATTR;
	if (is_inode_flag_set(fi, FI_INLINE_DATA))
		ri->i_inline |= F2FS_INLINE_DATA;
}

static inline int f2fs_has_inline_xattr(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
}

static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
{
	if (f2fs_has_inline_xattr(&fi->vfs_inode))
		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
	return DEF_ADDRS_PER_INODE;
}

static inline void *inline_xattr_addr(struct page *page)
{
	struct f2fs_inode *ri = F2FS_INODE(page);
	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
					F2FS_INLINE_XATTR_ADDRS]);
}

static inline int inline_xattr_size(struct inode *inode)
{
	if (f2fs_has_inline_xattr(inode))
		return F2FS_INLINE_XATTR_ADDRS << 2;
	else
		return 0;
}

static inline int f2fs_has_inline_data(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
}

static inline bool f2fs_is_atomic_file(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
}

static inline bool f2fs_is_volatile_file(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
}

static inline void *inline_data_addr(struct page *page)
{
	struct f2fs_inode *ri = F2FS_INODE(page);
	return (void *)&(ri->i_addr[1]);
}

static inline int f2fs_readonly(struct super_block *sb)
{
	return sb->s_flags & MS_RDONLY;
}

static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
{
	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
}

static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
{
	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
	sbi->sb->s_flags |= MS_RDONLY;
}

#define get_inode_mode(i) \
	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))

/* get offset of first page in next direct node */
#define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))

/*
 * file.c
 */
int f2fs_sync_file(struct file *, loff_t, loff_t, int);
void truncate_data_blocks(struct dnode_of_data *);
int truncate_blocks(struct inode *, u64, bool);
void f2fs_truncate(struct inode *);
int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
int f2fs_setattr(struct dentry *, struct iattr *);
int truncate_hole(struct inode *, pgoff_t, pgoff_t);
int truncate_data_blocks_range(struct dnode_of_data *, int);
long f2fs_ioctl(struct file *, unsigned int, unsigned long);
long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);

/*
 * inode.c
 */
void f2fs_set_inode_flags(struct inode *);
struct inode *f2fs_iget(struct super_block *, unsigned long);
int try_to_free_nats(struct f2fs_sb_info *, int);
void update_inode(struct inode *, struct page *);
void update_inode_page(struct inode *);
int f2fs_write_inode(struct inode *, struct writeback_control *);
void f2fs_evict_inode(struct inode *);
void handle_failed_inode(struct inode *);

/*
 * namei.c
 */
struct dentry *f2fs_get_parent(struct dentry *child);

/*
 * dir.c
 */
struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
							struct page **);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
				struct page *, struct inode *);
int update_dent_inode(struct inode *, const struct qstr *);
int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
int f2fs_do_tmpfile(struct inode *, struct inode *);
int f2fs_make_empty(struct inode *, struct inode *);
bool f2fs_empty_dir(struct inode *);

static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
				inode);
}

/*
 * super.c
 */
int f2fs_sync_fs(struct super_block *, int);
extern __printf(3, 4)
void f2fs_msg(struct super_block *, const char *, const char *, ...);

/*
 * hash.c
 */
f2fs_hash_t f2fs_dentry_hash(const struct qstr *);

/*
 * node.c
 */
struct dnode_of_data;
struct node_info;

bool available_free_memory(struct f2fs_sb_info *, int);
bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
int truncate_inode_blocks(struct inode *, pgoff_t);
int truncate_xattr_node(struct inode *, struct page *);
int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
void remove_inode_page(struct inode *);
struct page *new_inode_page(struct inode *);
struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
void ra_node_page(struct f2fs_sb_info *, nid_t);
struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_node_page_ra(struct page *, int);
void sync_inode_page(struct dnode_of_data *);
int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
bool alloc_nid(struct f2fs_sb_info *, nid_t *);
void alloc_nid_done(struct f2fs_sb_info *, nid_t);
void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
void recover_inline_xattr(struct inode *, struct page *);
void recover_xattr_data(struct inode *, struct page *, block_t);
int recover_inode_page(struct f2fs_sb_info *, struct page *);
int restore_node_summary(struct f2fs_sb_info *, unsigned int,
				struct f2fs_summary_block *);
void flush_nat_entries(struct f2fs_sb_info *);
int build_node_manager(struct f2fs_sb_info *);
void destroy_node_manager(struct f2fs_sb_info *);
int __init create_node_manager_caches(void);
void destroy_node_manager_caches(void);

/*
 * segment.c
 */
void register_inmem_page(struct inode *, struct page *);
void commit_inmem_pages(struct inode *, bool);
void f2fs_balance_fs(struct f2fs_sb_info *);
void f2fs_balance_fs_bg(struct f2fs_sb_info *);
int f2fs_issue_flush(struct f2fs_sb_info *);
int create_flush_cmd_control(struct f2fs_sb_info *);
void destroy_flush_cmd_control(struct f2fs_sb_info *);
void invalidate_blocks(struct f2fs_sb_info *, block_t);
void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
void clear_prefree_segments(struct f2fs_sb_info *);
void release_discard_addrs(struct f2fs_sb_info *);
void discard_next_dnode(struct f2fs_sb_info *, block_t);
int npages_for_summary_flush(struct f2fs_sb_info *);
void allocate_new_segments(struct f2fs_sb_info *);
int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
void write_meta_page(struct f2fs_sb_info *, struct page *);
void write_node_page(struct f2fs_sb_info *, struct page *,
		struct f2fs_io_info *, unsigned int, block_t, block_t *);
void write_data_page(struct page *, struct dnode_of_data *, block_t *,
					struct f2fs_io_info *);
void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
void recover_data_page(struct f2fs_sb_info *, struct page *,
				struct f2fs_summary *, block_t, block_t);
void allocate_data_block(struct f2fs_sb_info *, struct page *,
		block_t, block_t *, struct f2fs_summary *, int);
void f2fs_wait_on_page_writeback(struct page *, enum page_type);
void write_data_summaries(struct f2fs_sb_info *, block_t);
void write_node_summaries(struct f2fs_sb_info *, block_t);
int lookup_journal_in_cursum(struct f2fs_summary_block *,
					int, unsigned int, int);
void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
int build_segment_manager(struct f2fs_sb_info *);
void destroy_segment_manager(struct f2fs_sb_info *);
int __init create_segment_manager_caches(void);
void destroy_segment_manager_caches(void);

/*
 * checkpoint.c
 */
struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
void release_dirty_inode(struct f2fs_sb_info *);
bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
int acquire_orphan_inode(struct f2fs_sb_info *);
void release_orphan_inode(struct f2fs_sb_info *);
void add_orphan_inode(struct f2fs_sb_info *, nid_t);
void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
void recover_orphan_inodes(struct f2fs_sb_info *);
int get_valid_checkpoint(struct f2fs_sb_info *);
void update_dirty_page(struct inode *, struct page *);
void add_dirty_dir_inode(struct inode *);
void remove_dirty_dir_inode(struct inode *);
void sync_dirty_dir_inodes(struct f2fs_sb_info *);
void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
void init_ino_entry_info(struct f2fs_sb_info *);
int __init create_checkpoint_caches(void);
void destroy_checkpoint_caches(void);

/*
 * data.c
 */
void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
						struct f2fs_io_info *);
int reserve_new_block(struct dnode_of_data *);
int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
void update_extent_cache(block_t, struct dnode_of_data *);
struct page *find_data_page(struct inode *, pgoff_t, bool);
struct page *get_lock_data_page(struct inode *, pgoff_t);
struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
int do_write_data_page(struct page *, struct f2fs_io_info *);
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);

/*
 * gc.c
 */
int start_gc_thread(struct f2fs_sb_info *);
void stop_gc_thread(struct f2fs_sb_info *);
block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
int f2fs_gc(struct f2fs_sb_info *);
void build_gc_manager(struct f2fs_sb_info *);
int __init create_gc_caches(void);
void destroy_gc_caches(void);

/*
 * recovery.c
 */
int recover_fsync_data(struct f2fs_sb_info *);
bool space_for_roll_forward(struct f2fs_sb_info *);

/*
 * debug.c
 */
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
	struct list_head stat_list;
	struct f2fs_sb_info *sbi;
	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
	int main_area_segs, main_area_sections, main_area_zones;
	int hit_ext, total_ext;
	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
	int nats, sits, fnids;
	int total_count, utilization;
	int bg_gc, inline_inode;
	unsigned int valid_count, valid_node_count, valid_inode_count;
	unsigned int bimodal, avg_vblocks;
	int util_free, util_valid, util_invalid;
	int rsvd_segs, overp_segs;
	int dirty_count, node_pages, meta_pages;
	int prefree_count, call_count, cp_count;
	int tot_segs, node_segs, data_segs, free_segs, free_secs;
	int tot_blks, data_blks, node_blks;
	int curseg[NR_CURSEG_TYPE];
	int cursec[NR_CURSEG_TYPE];
	int curzone[NR_CURSEG_TYPE];

	unsigned int segment_count[2];
	unsigned int block_count[2];
	unsigned base_mem, cache_mem;
};

static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_stat_info *)sbi->stat_info;
}

#define stat_inc_cp_count(si)		((si)->cp_count++)
#define stat_inc_call_count(si)		((si)->call_count++)
#define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
#define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
#define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
#define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
#define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
#define stat_inc_inline_inode(inode)					\
	do {								\
		if (f2fs_has_inline_data(inode))			\
			((F2FS_I_SB(inode))->inline_inode++);		\
	} while (0)
#define stat_dec_inline_inode(inode)					\
	do {								\
		if (f2fs_has_inline_data(inode))			\
			((F2FS_I_SB(inode))->inline_inode--);		\
	} while (0)

#define stat_inc_seg_type(sbi, curseg)					\
		((sbi)->segment_count[(curseg)->alloc_type]++)
#define stat_inc_block_count(sbi, curseg)				\
		((sbi)->block_count[(curseg)->alloc_type]++)

#define stat_inc_seg_count(sbi, type)					\
	do {								\
		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
		(si)->tot_segs++;					\
		if (type == SUM_TYPE_DATA)				\
			si->data_segs++;				\
		else							\
			si->node_segs++;				\
	} while (0)

#define stat_inc_tot_blk_count(si, blks)				\
	(si->tot_blks += (blks))

#define stat_inc_data_blk_count(sbi, blks)				\
	do {								\
		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
		stat_inc_tot_blk_count(si, blks);			\
		si->data_blks += (blks);				\
	} while (0)

#define stat_inc_node_blk_count(sbi, blks)				\
	do {								\
		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
		stat_inc_tot_blk_count(si, blks);			\
		si->node_blks += (blks);				\
	} while (0)

int f2fs_build_stats(struct f2fs_sb_info *);
void f2fs_destroy_stats(struct f2fs_sb_info *);
void __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
#else
#define stat_inc_cp_count(si)
#define stat_inc_call_count(si)
#define stat_inc_bggc_count(si)
#define stat_inc_dirty_dir(sbi)
#define stat_dec_dirty_dir(sbi)
#define stat_inc_total_hit(sb)
#define stat_inc_read_hit(sb)
#define stat_inc_inline_inode(inode)
#define stat_dec_inline_inode(inode)
#define stat_inc_seg_type(sbi, curseg)
#define stat_inc_block_count(sbi, curseg)
#define stat_inc_seg_count(si, type)
#define stat_inc_tot_blk_count(si, blks)
#define stat_inc_data_blk_count(si, blks)
#define stat_inc_node_blk_count(sbi, blks)

static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline void __init f2fs_create_root_stats(void) { }
static inline void f2fs_destroy_root_stats(void) { }
#endif

extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;

/*
 * inline.c
 */
bool f2fs_may_inline(struct inode *);
int f2fs_read_inline_data(struct inode *, struct page *);
int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *);
int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
void truncate_inline_data(struct inode *, u64);
bool recover_inline_data(struct inode *, struct page *);
#endif