Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
#
# USB Gadget support on a system involves
#    (a) a peripheral controller, and
#    (b) the gadget driver using it.
#
# NOTE:  Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
#
#  - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
#  - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
#  - Some systems have both kinds of controllers.
#
# With help from a special transceiver and a "Mini-AB" jack, systems with
# both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
#

menuconfig USB_GADGET
	tristate "USB Gadget Support"
	select NLS
	help
	   USB is a master/slave protocol, organized with one master
	   host (such as a PC) controlling up to 127 peripheral devices.
	   The USB hardware is asymmetric, which makes it easier to set up:
	   you can't connect a "to-the-host" connector to a peripheral.

	   Linux can run in the host, or in the peripheral.  In both cases
	   you need a low level bus controller driver, and some software
	   talking to it.  Peripheral controllers are often discrete silicon,
	   or are integrated with the CPU in a microcontroller.  The more
	   familiar host side controllers have names like "EHCI", "OHCI",
	   or "UHCI", and are usually integrated into southbridges on PC
	   motherboards.

	   Enable this configuration option if you want to run Linux inside
	   a USB peripheral device.  Configure one hardware driver for your
	   peripheral/device side bus controller, and a "gadget driver" for
	   your peripheral protocol.  (If you use modular gadget drivers,
	   you may configure more than one.)

	   If in doubt, say "N" and don't enable these drivers; most people
	   don't have this kind of hardware (except maybe inside Linux PDAs).

	   For more information, see <http://www.linux-usb.org/gadget> and
	   the kernel DocBook documentation for this API.

if USB_GADGET

config USB_GADGET_DEBUG
	boolean "Debugging messages (DEVELOPMENT)"
	depends on DEBUG_KERNEL
	help
	   Many controller and gadget drivers will print some debugging
	   messages if you use this option to ask for those messages.

	   Avoid enabling these messages, even if you're actively
	   debugging such a driver.  Many drivers will emit so many
	   messages that the driver timings are affected, which will
	   either create new failure modes or remove the one you're
	   trying to track down.  Never enable these messages for a
	   production build.

config USB_GADGET_VERBOSE
	bool "Verbose debugging Messages (DEVELOPMENT)"
	depends on USB_GADGET_DEBUG
	help
	   Many controller and gadget drivers will print verbose debugging
	   messages if you use this option to ask for those messages.

	   Avoid enabling these messages, even if you're actively
	   debugging such a driver.  Many drivers will emit so many
	   messages that the driver timings are affected, which will
	   either create new failure modes or remove the one you're
	   trying to track down.  Never enable these messages for a
	   production build.

config USB_GADGET_DEBUG_FILES
	boolean "Debugging information files (DEVELOPMENT)"
	depends on PROC_FS
	help
	   Some of the drivers in the "gadget" framework can expose
	   debugging information in files such as /proc/driver/udc
	   (for a peripheral controller).  The information in these
	   files may help when you're troubleshooting or bringing up a
	   driver on a new board.   Enable these files by choosing "Y"
	   here.  If in doubt, or to conserve kernel memory, say "N".

config USB_GADGET_DEBUG_FS
	boolean "Debugging information files in debugfs (DEVELOPMENT)"
	depends on DEBUG_FS
	help
	   Some of the drivers in the "gadget" framework can expose
	   debugging information in files under /sys/kernel/debug/.
	   The information in these files may help when you're
	   troubleshooting or bringing up a driver on a new board.
	   Enable these files by choosing "Y" here.  If in doubt, or
	   to conserve kernel memory, say "N".

config USB_GADGET_VBUS_DRAW
	int "Maximum VBUS Power usage (2-500 mA)"
	range 2 500
	default 2
	help
	   Some devices need to draw power from USB when they are
	   configured, perhaps to operate circuitry or to recharge
	   batteries.  This is in addition to any local power supply,
	   such as an AC adapter or batteries.

	   Enter the maximum power your device draws through USB, in
	   milliAmperes.  The permitted range of values is 2 - 500 mA;
	   0 mA would be legal, but can make some hosts misbehave.

	   This value will be used except for system-specific gadget
	   drivers that have more specific information.

config USB_GADGET_STORAGE_NUM_BUFFERS
	int "Number of storage pipeline buffers"
	range 2 4
	default 2
	help
	   Usually 2 buffers are enough to establish a good buffering
	   pipeline. The number may be increased in order to compensate
	   for a bursty VFS behaviour. For instance there may be CPU wake up
	   latencies that makes the VFS to appear bursty in a system with
	   an CPU on-demand governor. Especially if DMA is doing IO to
	   offload the CPU. In this case the CPU will go into power
	   save often and spin up occasionally to move data within VFS.
	   If selecting USB_GADGET_DEBUG_FILES this value may be set by
	   a module parameter as well.
	   If unsure, say 2.

#
# USB Peripheral Controller Support
#
# The order here is alphabetical, except that integrated controllers go
# before discrete ones so they will be the initial/default value:
#   - integrated/SOC controllers first
#   - licensed IP used in both SOC and discrete versions
#   - discrete ones (including all PCI-only controllers)
#   - debug/dummy gadget+hcd is last.
#
menu "USB Peripheral Controller"

#
# Integrated controllers
#

config USB_AT91
	tristate "Atmel AT91 USB Device Port"
	depends on ARCH_AT91
	help
	   Many Atmel AT91 processors (such as the AT91RM2000) have a
	   full speed USB Device Port with support for five configurable
	   endpoints (plus endpoint zero).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "at91_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_LPC32XX
	tristate "LPC32XX USB Peripheral Controller"
	depends on ARCH_LPC32XX
	select USB_ISP1301
	help
	   This option selects the USB device controller in the LPC32xx SoC.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "lpc32xx_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_ATMEL_USBA
	tristate "Atmel USBA"
	depends on AVR32 || ARCH_AT91
	help
	  USBA is the integrated high-speed USB Device controller on
	  the AT32AP700x, some AT91SAM9 and AT91CAP9 processors from Atmel.

config USB_BCM63XX_UDC
	tristate "Broadcom BCM63xx Peripheral Controller"
	depends on BCM63XX
	help
	   Many Broadcom BCM63xx chipsets (such as the BCM6328) have a
	   high speed USB Device Port with support for four fixed endpoints
	   (plus endpoint zero).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "bcm63xx_udc".

config USB_FSL_USB2
	tristate "Freescale Highspeed USB DR Peripheral Controller"
	depends on FSL_SOC || ARCH_MXC
	select USB_FSL_MPH_DR_OF if OF
	help
	   Some of Freescale PowerPC and i.MX processors have a High Speed
	   Dual-Role(DR) USB controller, which supports device mode.

	   The number of programmable endpoints is different through
	   SOC revisions.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "fsl_usb2_udc" and force
	   all gadget drivers to also be dynamically linked.

config USB_FUSB300
	tristate "Faraday FUSB300 USB Peripheral Controller"
	depends on !PHYS_ADDR_T_64BIT && HAS_DMA
	help
	   Faraday usb device controller FUSB300 driver

config USB_FOTG210_UDC
	depends on HAS_DMA
	tristate "Faraday FOTG210 USB Peripheral Controller"
	help
	   Faraday USB2.0 OTG controller which can be configured as
	   high speed or full speed USB device. This driver supppors
	   Bulk Transfer so far.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "fotg210_udc".

config USB_GR_UDC
       tristate "Aeroflex Gaisler GRUSBDC USB Peripheral Controller Driver"
       depends on HAS_DMA
       help
          Select this to support Aeroflex Gaisler GRUSBDC cores from the GRLIB
	  VHDL IP core library.

config USB_OMAP
	tristate "OMAP USB Device Controller"
	depends on ARCH_OMAP1
	select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3
	help
	   Many Texas Instruments OMAP processors have flexible full
	   speed USB device controllers, with support for up to 30
	   endpoints (plus endpoint zero).  This driver supports the
	   controller in the OMAP 1611, and should work with controllers
	   in other OMAP processors too, given minor tweaks.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "omap_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_PXA25X
	tristate "PXA 25x or IXP 4xx"
	depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
	help
	   Intel's PXA 25x series XScale ARM-5TE processors include
	   an integrated full speed USB 1.1 device controller.  The
	   controller in the IXP 4xx series is register-compatible.

	   It has fifteen fixed-function endpoints, as well as endpoint
	   zero (for control transfers).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "pxa25x_udc" and force all
	   gadget drivers to also be dynamically linked.

# if there's only one gadget driver, using only two bulk endpoints,
# don't waste memory for the other endpoints
config USB_PXA25X_SMALL
	depends on USB_PXA25X
	bool
	default n if USB_ETH_RNDIS
	default y if USB_ZERO
	default y if USB_ETH
	default y if USB_G_SERIAL

config USB_R8A66597
	tristate "Renesas R8A66597 USB Peripheral Controller"
	depends on HAS_DMA
	help
	   R8A66597 is a discrete USB host and peripheral controller chip that
	   supports both full and high speed USB 2.0 data transfers.
	   It has nine configurable endpoints, and endpoint zero.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "r8a66597_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_RENESAS_USBHS_UDC
	tristate 'Renesas USBHS controller'
	depends on USB_RENESAS_USBHS
	help
	   Renesas USBHS is a discrete USB host and peripheral controller chip
	   that supports both full and high speed USB 2.0 data transfers.
	   It has nine or more configurable endpoints, and endpoint zero.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "renesas_usbhs" and force all
	   gadget drivers to also be dynamically linked.

config USB_PXA27X
	tristate "PXA 27x"
	help
	   Intel's PXA 27x series XScale ARM v5TE processors include
	   an integrated full speed USB 1.1 device controller.

	   It has up to 23 endpoints, as well as endpoint zero (for
	   control transfers).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "pxa27x_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_S3C_HSOTG
	tristate "Designware/S3C HS/OtG USB Device controller"
	help
	  The Designware USB2.0 high-speed gadget controller
	  integrated into many SoCs.

config USB_S3C2410
	tristate "S3C2410 USB Device Controller"
	depends on ARCH_S3C24XX
	help
	  Samsung's S3C2410 is an ARM-4 processor with an integrated
	  full speed USB 1.1 device controller.  It has 4 configurable
	  endpoints, as well as endpoint zero (for control transfers).

	  This driver has been tested on the S3C2410, S3C2412, and
	  S3C2440 processors.

config USB_S3C2410_DEBUG
	boolean "S3C2410 udc debug messages"
	depends on USB_S3C2410

config USB_S3C_HSUDC
	tristate "S3C2416, S3C2443 and S3C2450 USB Device Controller"
	depends on ARCH_S3C24XX
	help
	  Samsung's S3C2416, S3C2443 and S3C2450 is an ARM9 based SoC
	  integrated with dual speed USB 2.0 device controller. It has
	  8 endpoints, as well as endpoint zero.

	  This driver has been tested on S3C2416 and S3C2450 processors.

config USB_MV_UDC
	tristate "Marvell USB2.0 Device Controller"
	depends on HAS_DMA
	help
	  Marvell Socs (including PXA and MMP series) include a high speed
	  USB2.0 OTG controller, which can be configured as high speed or
	  full speed USB peripheral.

config USB_MV_U3D
	depends on HAS_DMA
	tristate "MARVELL PXA2128 USB 3.0 controller"
	help
	  MARVELL PXA2128 Processor series include a super speed USB3.0 device
	  controller, which support super speed USB peripheral.

#
# Controllers available in both integrated and discrete versions
#

config USB_M66592
	tristate "Renesas M66592 USB Peripheral Controller"
	help
	   M66592 is a discrete USB peripheral controller chip that
	   supports both full and high speed USB 2.0 data transfers.
	   It has seven configurable endpoints, and endpoint zero.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "m66592_udc" and force all
	   gadget drivers to also be dynamically linked.

#
# Controllers available only in discrete form (and all PCI controllers)
#

config USB_AMD5536UDC
	tristate "AMD5536 UDC"
	depends on PCI
	help
	   The AMD5536 UDC is part of the AMD Geode CS5536, an x86 southbridge.
	   It is a USB Highspeed DMA capable USB device controller. Beside ep0
	   it provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
	   The UDC port supports OTG operation, and may be used as a host port
	   if it's not being used to implement peripheral or OTG roles.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "amd5536udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_FSL_QE
	tristate "Freescale QE/CPM USB Device Controller"
	depends on FSL_SOC && (QUICC_ENGINE || CPM)
	help
	   Some of Freescale PowerPC processors have a Full Speed
	   QE/CPM2 USB controller, which support device mode with 4
	   programmable endpoints. This driver supports the
	   controller in the MPC8360 and MPC8272, and should work with
	   controllers having QE or CPM2, given minor tweaks.

	   Set CONFIG_USB_GADGET to "m" to build this driver as a
	   dynamically linked module called "fsl_qe_udc".

config USB_NET2272
	tristate "PLX NET2272"
	help
	  PLX NET2272 is a USB peripheral controller which supports
	  both full and high speed USB 2.0 data transfers.

	  It has three configurable endpoints, as well as endpoint zero
	  (for control transfer).
	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "net2272" and force all
	  gadget drivers to also be dynamically linked.

config USB_NET2272_DMA
	boolean "Support external DMA controller"
	depends on USB_NET2272 && HAS_DMA
	help
	  The NET2272 part can optionally support an external DMA
	  controller, but your board has to have support in the
	  driver itself.

	  If unsure, say "N" here.  The driver works fine in PIO mode.

config USB_NET2280
	tristate "NetChip 228x"
	depends on PCI
	help
	   NetChip 2280 / 2282 is a PCI based USB peripheral controller which
	   supports both full and high speed USB 2.0 data transfers.

	   It has six configurable endpoints, as well as endpoint zero
	   (for control transfers) and several endpoints with dedicated
	   functions.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "net2280" and force all
	   gadget drivers to also be dynamically linked.

config USB_GOKU
	tristate "Toshiba TC86C001 'Goku-S'"
	depends on PCI
	help
	   The Toshiba TC86C001 is a PCI device which includes controllers
	   for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).

	   The device controller has three configurable (bulk or interrupt)
	   endpoints, plus endpoint zero (for control transfers).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "goku_udc" and to force all
	   gadget drivers to also be dynamically linked.

config USB_EG20T
	tristate "Intel EG20T PCH/LAPIS Semiconductor IOH(ML7213/ML7831) UDC"
	depends on PCI
	help
	  This is a USB device driver for EG20T PCH.
	  EG20T PCH is the platform controller hub that is used in Intel's
	  general embedded platform. EG20T PCH has USB device interface.
	  Using this interface, it is able to access system devices connected
	  to USB device.
	  This driver enables USB device function.
	  USB device is a USB peripheral controller which
	  supports both full and high speed USB 2.0 data transfers.
	  This driver supports both control transfer and bulk transfer modes.
	  This driver dose not support interrupt transfer or isochronous
	  transfer modes.

	  This driver also can be used for LAPIS Semiconductor's ML7213 which is
	  for IVI(In-Vehicle Infotainment) use.
	  ML7831 is for general purpose use.
	  ML7213/ML7831 is companion chip for Intel Atom E6xx series.
	  ML7213/ML7831 is completely compatible for Intel EG20T PCH.

#
# LAST -- dummy/emulated controller
#

config USB_DUMMY_HCD
	tristate "Dummy HCD (DEVELOPMENT)"
	depends on USB=y || (USB=m && USB_GADGET=m)
	help
	  This host controller driver emulates USB, looping all data transfer
	  requests back to a USB "gadget driver" in the same host.  The host
	  side is the master; the gadget side is the slave.  Gadget drivers
	  can be high, full, or low speed; and they have access to endpoints
	  like those from NET2280, PXA2xx, or SA1100 hardware.

	  This may help in some stages of creating a driver to embed in a
	  Linux device, since it lets you debug several parts of the gadget
	  driver without its hardware or drivers being involved.

	  Since such a gadget side driver needs to interoperate with a host
	  side Linux-USB device driver, this may help to debug both sides
	  of a USB protocol stack.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "dummy_hcd" and force all
	  gadget drivers to also be dynamically linked.

# NOTE:  Please keep dummy_hcd LAST so that "real hardware" appears
# first and will be selected by default.

endmenu

#
# USB Gadget Drivers
#

# composite based drivers
config USB_LIBCOMPOSITE
	tristate
	select CONFIGFS_FS
	depends on USB_GADGET

config USB_F_ACM
	tristate

config USB_F_SS_LB
	tristate

config USB_U_SERIAL
	tristate

config USB_U_ETHER
	tristate

config USB_F_SERIAL
	tristate

config USB_F_OBEX
	tristate

config USB_F_NCM
	tristate

config USB_F_ECM
	tristate

config USB_F_PHONET
	tristate

config USB_F_EEM
	tristate

config USB_F_SUBSET
	tristate

config USB_F_RNDIS
	tristate

config USB_F_MASS_STORAGE
	tristate

config USB_F_FS
	tristate

choice
	tristate "USB Gadget Drivers"
	default USB_ETH
	help
	  A Linux "Gadget Driver" talks to the USB Peripheral Controller
	  driver through the abstract "gadget" API.  Some other operating
	  systems call these "client" drivers, of which "class drivers"
	  are a subset (implementing a USB device class specification).
	  A gadget driver implements one or more USB functions using
	  the peripheral hardware.

	  Gadget drivers are hardware-neutral, or "platform independent",
	  except that they sometimes must understand quirks or limitations
	  of the particular controllers they work with.  For example, when
	  a controller doesn't support alternate configurations or provide
	  enough of the right types of endpoints, the gadget driver might
	  not be able work with that controller, or might need to implement
	  a less common variant of a device class protocol.

# this first set of drivers all depend on bulk-capable hardware.

config USB_CONFIGFS
	tristate "USB functions configurable through configfs"
	select USB_LIBCOMPOSITE
	help
	  A Linux USB "gadget" can be set up through configfs.
	  If this is the case, the USB functions (which from the host's
	  perspective are seen as interfaces) and configurations are
	  specified simply by creating appropriate directories in configfs.
	  Associating functions with configurations is done by creating
	  appropriate symbolic links.
	  For more information see Documentation/usb/gadget_configfs.txt.

config USB_CONFIGFS_SERIAL
	boolean "Generic serial bulk in/out"
	depends on USB_CONFIGFS
	depends on TTY
	select USB_U_SERIAL
	select USB_F_SERIAL
	help
	  The function talks to the Linux-USB generic serial driver.

config USB_CONFIGFS_ACM
	boolean "Abstract Control Model (CDC ACM)"
	depends on USB_CONFIGFS
	depends on TTY
	select USB_U_SERIAL
	select USB_F_ACM
	help
	  ACM serial link.  This function can be used to interoperate with
	  MS-Windows hosts or with the Linux-USB "cdc-acm" driver.

config USB_CONFIGFS_OBEX
	boolean "Object Exchange Model (CDC OBEX)"
	depends on USB_CONFIGFS
	depends on TTY
	select USB_U_SERIAL
	select USB_F_OBEX
	help
	  You will need a user space OBEX server talking to /dev/ttyGS*,
	  since the kernel itself doesn't implement the OBEX protocol.

config USB_CONFIGFS_NCM
	boolean "Network Control Model (CDC NCM)"
	depends on USB_CONFIGFS
	depends on NET
	select USB_U_ETHER
	select USB_F_NCM
	help
	  NCM is an advanced protocol for Ethernet encapsulation, allows
	  grouping of several ethernet frames into one USB transfer and
	  different alignment possibilities.

config USB_CONFIGFS_ECM
	boolean "Ethernet Control Model (CDC ECM)"
	depends on USB_CONFIGFS
	depends on NET
	select USB_U_ETHER
	select USB_F_ECM
	help
	  The "Communication Device Class" (CDC) Ethernet Control Model.
	  That protocol is often avoided with pure Ethernet adapters, in
	  favor of simpler vendor-specific hardware, but is widely
	  supported by firmware for smart network devices.

config USB_CONFIGFS_ECM_SUBSET
	boolean "Ethernet Control Model (CDC ECM) subset"
	depends on USB_CONFIGFS
	depends on NET
	select USB_U_ETHER
	select USB_F_SUBSET
	help
	  On hardware that can't implement the full protocol,
	  a simple CDC subset is used, placing fewer demands on USB.

config USB_CONFIGFS_RNDIS
	bool "RNDIS"
	depends on USB_CONFIGFS
	depends on NET
	select USB_U_ETHER
	select USB_F_RNDIS
	help
	   Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
	   and Microsoft provides redistributable binary RNDIS drivers for
	   older versions of Windows.

	   To make MS-Windows work with this, use Documentation/usb/linux.inf
	   as the "driver info file".  For versions of MS-Windows older than
	   XP, you'll need to download drivers from Microsoft's website; a URL
	   is given in comments found in that info file.

config USB_CONFIGFS_EEM
	bool "Ethernet Emulation Model (EEM)"
	depends on USB_CONFIGFS
	depends on NET
	select USB_U_ETHER
	select USB_F_EEM
	help
	  CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM
	  and therefore can be supported by more hardware.  Technically ECM and
	  EEM are designed for different applications.  The ECM model extends
	  the network interface to the target (e.g. a USB cable modem), and the
	  EEM model is for mobile devices to communicate with hosts using
	  ethernet over USB.  For Linux gadgets, however, the interface with
	  the host is the same (a usbX device), so the differences are minimal.

config USB_CONFIGFS_PHONET
	boolean "Phonet protocol"
	depends on USB_CONFIGFS
	depends on NET
	depends on PHONET
	select USB_U_ETHER
	select USB_F_PHONET
	help
	  The Phonet protocol implementation for USB device.

config USB_CONFIGFS_MASS_STORAGE
	boolean "Mass storage"
	depends on USB_CONFIGFS
	depends on BLOCK
	select USB_F_MASS_STORAGE
	help
	  The Mass Storage Gadget acts as a USB Mass Storage disk drive.
	  As its storage repository it can use a regular file or a block
	  device (in much the same way as the "loop" device driver),
	  specified as a module parameter or sysfs option.

config USB_CONFIGFS_F_LB_SS
	boolean "Loopback and sourcesink function (for testing)"
	depends on USB_CONFIGFS
	select USB_F_SS_LB
	help
	  Loopback function loops back a configurable number of transfers.
	  Sourcesink function either sinks and sources bulk data.
	  It also implements control requests, for "chapter 9" conformance.
	  Make this be the first driver you try using on top of any new
	  USB peripheral controller driver.  Then you can use host-side
	  test software, like the "usbtest" driver, to put your hardware
	  and its driver through a basic set of functional tests.

config USB_CONFIGFS_F_FS
	boolean "Function filesystem (FunctionFS)"
	depends on USB_CONFIGFS
	select USB_F_FS
	help
	  The Function Filesystem (FunctionFS) lets one create USB
	  composite functions in user space in the same way GadgetFS
	  lets one create USB gadgets in user space.  This allows creation
	  of composite gadgets such that some of the functions are
	  implemented in kernel space (for instance Ethernet, serial or
	  mass storage) and other are implemented in user space.

config USB_ZERO
	tristate "Gadget Zero (DEVELOPMENT)"
	select USB_LIBCOMPOSITE
	select USB_F_SS_LB
	help
	  Gadget Zero is a two-configuration device.  It either sinks and
	  sources bulk data; or it loops back a configurable number of
	  transfers.  It also implements control requests, for "chapter 9"
	  conformance.  The driver needs only two bulk-capable endpoints, so
	  it can work on top of most device-side usb controllers.  It's
	  useful for testing, and is also a working example showing how
	  USB "gadget drivers" can be written.

	  Make this be the first driver you try using on top of any new
	  USB peripheral controller driver.  Then you can use host-side
	  test software, like the "usbtest" driver, to put your hardware
	  and its driver through a basic set of functional tests.

	  Gadget Zero also works with the host-side "usb-skeleton" driver,
	  and with many kinds of host-side test software.  You may need
	  to tweak product and vendor IDs before host software knows about
	  this device, and arrange to select an appropriate configuration.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_zero".

config USB_ZERO_HNPTEST
	boolean "HNP Test Device"
	depends on USB_ZERO && USB_OTG
	help
	  You can configure this device to enumerate using the device
	  identifiers of the USB-OTG test device.  That means that when
	  this gadget connects to another OTG device, with this one using
	  the "B-Peripheral" role, that device will use HNP to let this
	  one serve as the USB host instead (in the "B-Host" role).

config USB_AUDIO
	tristate "Audio Gadget"
	depends on SND
	select USB_LIBCOMPOSITE
	select SND_PCM
	help
	  This Gadget Audio driver is compatible with USB Audio Class
	  specification 2.0. It implements 1 AudioControl interface,
	  1 AudioStreaming Interface each for USB-OUT and USB-IN.
	  Number of channels, sample rate and sample size can be
	  specified as module parameters.
	  This driver doesn't expect any real Audio codec to be present
	  on the device - the audio streams are simply sinked to and
	  sourced from a virtual ALSA sound card created. The user-space
	  application may choose to do whatever it wants with the data
	  received from the USB Host and choose to provide whatever it
	  wants as audio data to the USB Host.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_audio".

config GADGET_UAC1
	bool "UAC 1.0 (Legacy)"
	depends on USB_AUDIO
	help
	  If you instead want older UAC Spec-1.0 driver that also has audio
	  paths hardwired to the Audio codec chip on-board and doesn't work
	  without one.

config USB_ETH
	tristate "Ethernet Gadget (with CDC Ethernet support)"
	depends on NET
	select USB_LIBCOMPOSITE
	select USB_U_ETHER
	select USB_F_ECM
	select USB_F_SUBSET
	select CRC32
	help
	  This driver implements Ethernet style communication, in one of
	  several ways:
	  
	   - The "Communication Device Class" (CDC) Ethernet Control Model.
	     That protocol is often avoided with pure Ethernet adapters, in
	     favor of simpler vendor-specific hardware, but is widely
	     supported by firmware for smart network devices.

	   - On hardware can't implement that protocol, a simple CDC subset
	     is used, placing fewer demands on USB.

	   - CDC Ethernet Emulation Model (EEM) is a newer standard that has
	     a simpler interface that can be used by more USB hardware.

	  RNDIS support is an additional option, more demanding than than
	  subset.

	  Within the USB device, this gadget driver exposes a network device
	  "usbX", where X depends on what other networking devices you have.
	  Treat it like a two-node Ethernet link:  host, and gadget.

	  The Linux-USB host-side "usbnet" driver interoperates with this
	  driver, so that deep I/O queues can be supported.  On 2.4 kernels,
	  use "CDCEther" instead, if you're using the CDC option. That CDC
	  mode should also interoperate with standard CDC Ethernet class
	  drivers on other host operating systems.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_ether".

config USB_ETH_RNDIS
	bool "RNDIS support"
	depends on USB_ETH
	select USB_LIBCOMPOSITE
	select USB_F_RNDIS
	default y
	help
	   Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
	   and Microsoft provides redistributable binary RNDIS drivers for
	   older versions of Windows.

	   If you say "y" here, the Ethernet gadget driver will try to provide
	   a second device configuration, supporting RNDIS to talk to such
	   Microsoft USB hosts.
	   
	   To make MS-Windows work with this, use Documentation/usb/linux.inf
	   as the "driver info file".  For versions of MS-Windows older than
	   XP, you'll need to download drivers from Microsoft's website; a URL
	   is given in comments found in that info file.

config USB_ETH_EEM
       bool "Ethernet Emulation Model (EEM) support"
       depends on USB_ETH
	select USB_LIBCOMPOSITE
	select USB_F_EEM
       default n
       help
         CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM
         and therefore can be supported by more hardware.  Technically ECM and
         EEM are designed for different applications.  The ECM model extends
         the network interface to the target (e.g. a USB cable modem), and the
         EEM model is for mobile devices to communicate with hosts using
         ethernet over USB.  For Linux gadgets, however, the interface with
         the host is the same (a usbX device), so the differences are minimal.

         If you say "y" here, the Ethernet gadget driver will use the EEM
         protocol rather than ECM.  If unsure, say "n".

config USB_G_NCM
	tristate "Network Control Model (NCM) support"
	depends on NET
	select USB_LIBCOMPOSITE
	select USB_U_ETHER
	select USB_F_NCM
	select CRC32
	help
	  This driver implements USB CDC NCM subclass standard. NCM is
	  an advanced protocol for Ethernet encapsulation, allows grouping
	  of several ethernet frames into one USB transfer and different
	  alignment possibilities.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_ncm".

config USB_GADGETFS
	tristate "Gadget Filesystem"
	help
	  This driver provides a filesystem based API that lets user mode
	  programs implement a single-configuration USB device, including
	  endpoint I/O and control requests that don't relate to enumeration.
	  All endpoints, transfer speeds, and transfer types supported by
	  the hardware are available, through read() and write() calls.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "gadgetfs".

config USB_FUNCTIONFS
	tristate "Function Filesystem"
	select USB_LIBCOMPOSITE
	select USB_F_FS
	select USB_FUNCTIONFS_GENERIC if !(USB_FUNCTIONFS_ETH || USB_FUNCTIONFS_RNDIS)
	help
	  The Function Filesystem (FunctionFS) lets one create USB
	  composite functions in user space in the same way GadgetFS
	  lets one create USB gadgets in user space.  This allows creation
	  of composite gadgets such that some of the functions are
	  implemented in kernel space (for instance Ethernet, serial or
	  mass storage) and other are implemented in user space.

	  If you say "y" or "m" here you will be able what kind of
	  configurations the gadget will provide.

	  Say "y" to link the driver statically, or "m" to build
	  a dynamically linked module called "g_ffs".

config USB_FUNCTIONFS_ETH
	bool "Include configuration with CDC ECM (Ethernet)"
	depends on USB_FUNCTIONFS && NET
	select USB_U_ETHER
	select USB_F_ECM
	select USB_F_SUBSET
	help
	  Include a configuration with CDC ECM function (Ethernet) and the
	  Function Filesystem.

config USB_FUNCTIONFS_RNDIS
	bool "Include configuration with RNDIS (Ethernet)"
	depends on USB_FUNCTIONFS && NET
	select USB_U_ETHER
	select USB_F_RNDIS
	help
	  Include a configuration with RNDIS function (Ethernet) and the Filesystem.

config USB_FUNCTIONFS_GENERIC
	bool "Include 'pure' configuration"
	depends on USB_FUNCTIONFS
	help
	  Include a configuration with the Function Filesystem alone with
	  no Ethernet interface.

config USB_MASS_STORAGE
	tristate "Mass Storage Gadget"
	depends on BLOCK
	select USB_LIBCOMPOSITE
	select USB_F_MASS_STORAGE
	help
	  The Mass Storage Gadget acts as a USB Mass Storage disk drive.
	  As its storage repository it can use a regular file or a block
	  device (in much the same way as the "loop" device driver),
	  specified as a module parameter or sysfs option.

	  This driver is a replacement for now removed File-backed
	  Storage Gadget (g_file_storage).

	  Say "y" to link the driver statically, or "m" to build
	  a dynamically linked module called "g_mass_storage".

config USB_GADGET_TARGET
	tristate "USB Gadget Target Fabric Module"
	depends on TARGET_CORE
	select USB_LIBCOMPOSITE
	help
	  This fabric is an USB gadget. Two USB protocols are supported that is
	  BBB or BOT (Bulk Only Transport) and UAS (USB Attached SCSI). BOT is
	  advertised on alternative interface 0 (primary) and UAS is on
	  alternative interface 1. Both protocols can work on USB2.0 and USB3.0.
	  UAS utilizes the USB 3.0 feature called streams support.

config USB_G_SERIAL
	tristate "Serial Gadget (with CDC ACM and CDC OBEX support)"
	depends on TTY
	select USB_U_SERIAL
	select USB_F_ACM
	select USB_F_SERIAL
	select USB_F_OBEX
	select USB_LIBCOMPOSITE
	help
	  The Serial Gadget talks to the Linux-USB generic serial driver.
	  This driver supports a CDC-ACM module option, which can be used
	  to interoperate with MS-Windows hosts or with the Linux-USB
	  "cdc-acm" driver.

	  This driver also supports a CDC-OBEX option.  You will need a
	  user space OBEX server talking to /dev/ttyGS*, since the kernel
	  itself doesn't implement the OBEX protocol.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_serial".

	  For more information, see Documentation/usb/gadget_serial.txt
	  which includes instructions and a "driver info file" needed to
	  make MS-Windows work with CDC ACM.

config USB_MIDI_GADGET
	tristate "MIDI Gadget"
	depends on SND
	select USB_LIBCOMPOSITE
	select SND_RAWMIDI
	help
	  The MIDI Gadget acts as a USB Audio device, with one MIDI
	  input and one MIDI output. These MIDI jacks appear as
	  a sound "card" in the ALSA sound system. Other MIDI
	  connections can then be made on the gadget system, using
	  ALSA's aconnect utility etc.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_midi".

config USB_G_PRINTER
	tristate "Printer Gadget"
	select USB_LIBCOMPOSITE
	help
	  The Printer Gadget channels data between the USB host and a
	  userspace program driving the print engine. The user space
	  program reads and writes the device file /dev/g_printer to
	  receive or send printer data. It can use ioctl calls to
	  the device file to get or set printer status.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_printer".

	  For more information, see Documentation/usb/gadget_printer.txt
	  which includes sample code for accessing the device file.

if TTY

config USB_CDC_COMPOSITE
	tristate "CDC Composite Device (Ethernet and ACM)"
	depends on NET
	select USB_LIBCOMPOSITE
	select USB_U_SERIAL
	select USB_U_ETHER
	select USB_F_ACM
	select USB_F_ECM
	help
	  This driver provides two functions in one configuration:
	  a CDC Ethernet (ECM) link, and a CDC ACM (serial port) link.

	  This driver requires four bulk and two interrupt endpoints,
	  plus the ability to handle altsettings.  Not all peripheral
	  controllers are that capable.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module.

config USB_G_NOKIA
	tristate "Nokia composite gadget"
	depends on PHONET
	select USB_LIBCOMPOSITE
	select USB_U_SERIAL
	select USB_U_ETHER
	select USB_F_ACM
	select USB_F_OBEX
	select USB_F_PHONET
	select USB_F_ECM
	help
	  The Nokia composite gadget provides support for acm, obex
	  and phonet in only one composite gadget driver.

	  It's only really useful for N900 hardware. If you're building
	  a kernel for N900, say Y or M here. If unsure, say N.

config USB_G_ACM_MS
	tristate "CDC Composite Device (ACM and mass storage)"
	depends on BLOCK
	select USB_LIBCOMPOSITE
	select USB_U_SERIAL
	select USB_F_ACM
	select USB_F_MASS_STORAGE
	help
	  This driver provides two functions in one configuration:
	  a mass storage, and a CDC ACM (serial port) link.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_acm_ms".

config USB_G_MULTI
	tristate "Multifunction Composite Gadget"
	depends on BLOCK && NET
	select USB_G_MULTI_CDC if !USB_G_MULTI_RNDIS
	select USB_LIBCOMPOSITE
	select USB_U_SERIAL
	select USB_U_ETHER
	select USB_F_ACM
	select USB_F_MASS_STORAGE
	help
	  The Multifunction Composite Gadget provides Ethernet (RNDIS
	  and/or CDC Ethernet), mass storage and ACM serial link
	  interfaces.

	  You will be asked to choose which of the two configurations is
	  to be available in the gadget.  At least one configuration must
	  be chosen to make the gadget usable.  Selecting more than one
	  configuration will prevent Windows from automatically detecting
	  the gadget as a composite gadget, so an INF file will be needed to
	  use the gadget.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_multi".

config USB_G_MULTI_RNDIS
	bool "RNDIS + CDC Serial + Storage configuration"
	depends on USB_G_MULTI
	select USB_F_RNDIS
	default y
	help
	  This option enables a configuration with RNDIS, CDC Serial and
	  Mass Storage functions available in the Multifunction Composite
	  Gadget.  This is the configuration dedicated for Windows since RNDIS
	  is Microsoft's protocol.

	  If unsure, say "y".

config USB_G_MULTI_CDC
	bool "CDC Ethernet + CDC Serial + Storage configuration"
	depends on USB_G_MULTI
	default n
	select USB_F_ECM
	help
	  This option enables a configuration with CDC Ethernet (ECM), CDC
	  Serial and Mass Storage functions available in the Multifunction
	  Composite Gadget.

	  If unsure, say "y".

endif # TTY

config USB_G_HID
	tristate "HID Gadget"
	select USB_LIBCOMPOSITE
	help
	  The HID gadget driver provides generic emulation of USB
	  Human Interface Devices (HID).

	  For more information, see Documentation/usb/gadget_hid.txt which
	  includes sample code for accessing the device files.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_hid".

# Standalone / single function gadgets
config USB_G_DBGP
	tristate "EHCI Debug Device Gadget"
	depends on TTY
	select USB_LIBCOMPOSITE
	help
	  This gadget emulates an EHCI Debug device. This is useful when you want
	  to interact with an EHCI Debug Port.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_dbgp".

if USB_G_DBGP
choice
	prompt "EHCI Debug Device mode"
	default USB_G_DBGP_SERIAL

config USB_G_DBGP_PRINTK
	depends on USB_G_DBGP
	bool "printk"
	help
	  Directly printk() received data. No interaction.

config USB_G_DBGP_SERIAL
	depends on USB_G_DBGP
	select USB_U_SERIAL
	bool "serial"
	help
	  Userland can interact using /dev/ttyGSxxx.
endchoice
endif

# put drivers that need isochronous transfer support (for audio
# or video class gadget drivers), or specific hardware, here.
config USB_G_WEBCAM
	tristate "USB Webcam Gadget"
	depends on VIDEO_DEV
	select USB_LIBCOMPOSITE
	select VIDEOBUF2_VMALLOC
	help
	  The Webcam Gadget acts as a composite USB Audio and Video Class
	  device. It provides a userspace API to process UVC control requests
	  and stream video data to the host.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_webcam".

endchoice

endif # USB_GADGET