Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Author:
 *     Jay Schulist <jschlst@samba.org>
 *
 * Based on the design of:
 *     - The Berkeley Packet Filter
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
 * Kris Katterjohn - Added many additional checks in sk_chk_filter()
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <linux/gfp.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/netlink.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/filter.h>
#include <linux/ratelimit.h>
#include <linux/seccomp.h>
#include <linux/if_vlan.h>

/* No hurry in this branch
 *
 * Exported for the bpf jit load helper.
 */
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
	u8 *ptr = NULL;

	if (k >= SKF_NET_OFF)
		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
	else if (k >= SKF_LL_OFF)
		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;

	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
		return ptr;
	return NULL;
}

static inline void *load_pointer(const struct sk_buff *skb, int k,
				 unsigned int size, void *buffer)
{
	if (k >= 0)
		return skb_header_pointer(skb, k, size, buffer);
	return bpf_internal_load_pointer_neg_helper(skb, k, size);
}

/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
 * than pkt_len we keep whole skb->data. This is the socket level
 * wrapper to sk_run_filter. It returns 0 if the packet should
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
	if (filter) {
		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);

		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
	rcu_read_unlock();

	return err;
}
EXPORT_SYMBOL(sk_filter);

/**
 *	sk_run_filter - run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@fentry: filter to apply
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. @skb is the data we are
 * filtering, @filter is the array of filter instructions.
 * Because all jumps are guaranteed to be before last instruction,
 * and last instruction guaranteed to be a RET, we dont need to check
 * flen. (We used to pass to this function the length of filter)
 */
unsigned int sk_run_filter(const struct sk_buff *skb,
			   const struct sock_filter *fentry)
{
	void *ptr;
	u32 A = 0;			/* Accumulator */
	u32 X = 0;			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	u32 tmp;
	int k;

	/*
	 * Process array of filter instructions.
	 */
	for (;; fentry++) {
#if defined(CONFIG_X86_32)
#define	K (fentry->k)
#else
		const u32 K = fentry->k;
#endif

		switch (fentry->code) {
		case BPF_S_ALU_ADD_X:
			A += X;
			continue;
		case BPF_S_ALU_ADD_K:
			A += K;
			continue;
		case BPF_S_ALU_SUB_X:
			A -= X;
			continue;
		case BPF_S_ALU_SUB_K:
			A -= K;
			continue;
		case BPF_S_ALU_MUL_X:
			A *= X;
			continue;
		case BPF_S_ALU_MUL_K:
			A *= K;
			continue;
		case BPF_S_ALU_DIV_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_S_ALU_DIV_K:
			A /= K;
			continue;
		case BPF_S_ALU_MOD_X:
			if (X == 0)
				return 0;
			A %= X;
			continue;
		case BPF_S_ALU_MOD_K:
			A %= K;
			continue;
		case BPF_S_ALU_AND_X:
			A &= X;
			continue;
		case BPF_S_ALU_AND_K:
			A &= K;
			continue;
		case BPF_S_ALU_OR_X:
			A |= X;
			continue;
		case BPF_S_ALU_OR_K:
			A |= K;
			continue;
		case BPF_S_ANC_ALU_XOR_X:
		case BPF_S_ALU_XOR_X:
			A ^= X;
			continue;
		case BPF_S_ALU_XOR_K:
			A ^= K;
			continue;
		case BPF_S_ALU_LSH_X:
			A <<= X;
			continue;
		case BPF_S_ALU_LSH_K:
			A <<= K;
			continue;
		case BPF_S_ALU_RSH_X:
			A >>= X;
			continue;
		case BPF_S_ALU_RSH_K:
			A >>= K;
			continue;
		case BPF_S_ALU_NEG:
			A = -A;
			continue;
		case BPF_S_JMP_JA:
			fentry += K;
			continue;
		case BPF_S_JMP_JGT_K:
			fentry += (A > K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_K:
			fentry += (A >= K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_K:
			fentry += (A == K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_K:
			fentry += (A & K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGT_X:
			fentry += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_X:
			fentry += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_X:
			fentry += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_X:
			fentry += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_LD_W_ABS:
			k = K;
load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be32(ptr);
				continue;
			}
			return 0;
		case BPF_S_LD_H_ABS:
			k = K;
load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be16(ptr);
				continue;
			}
			return 0;
		case BPF_S_LD_B_ABS:
			k = K;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			return 0;
		case BPF_S_LD_W_LEN:
			A = skb->len;
			continue;
		case BPF_S_LDX_W_LEN:
			X = skb->len;
			continue;
		case BPF_S_LD_W_IND:
			k = X + K;
			goto load_w;
		case BPF_S_LD_H_IND:
			k = X + K;
			goto load_h;
		case BPF_S_LD_B_IND:
			k = X + K;
			goto load_b;
		case BPF_S_LDX_B_MSH:
			ptr = load_pointer(skb, K, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_S_LD_IMM:
			A = K;
			continue;
		case BPF_S_LDX_IMM:
			X = K;
			continue;
		case BPF_S_LD_MEM:
			A = mem[K];
			continue;
		case BPF_S_LDX_MEM:
			X = mem[K];
			continue;
		case BPF_S_MISC_TAX:
			X = A;
			continue;
		case BPF_S_MISC_TXA:
			A = X;
			continue;
		case BPF_S_RET_K:
			return K;
		case BPF_S_RET_A:
			return A;
		case BPF_S_ST:
			mem[K] = A;
			continue;
		case BPF_S_STX:
			mem[K] = X;
			continue;
		case BPF_S_ANC_PROTOCOL:
			A = ntohs(skb->protocol);
			continue;
		case BPF_S_ANC_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case BPF_S_ANC_IFINDEX:
			if (!skb->dev)
				return 0;
			A = skb->dev->ifindex;
			continue;
		case BPF_S_ANC_MARK:
			A = skb->mark;
			continue;
		case BPF_S_ANC_QUEUE:
			A = skb->queue_mapping;
			continue;
		case BPF_S_ANC_HATYPE:
			if (!skb->dev)
				return 0;
			A = skb->dev->type;
			continue;
		case BPF_S_ANC_RXHASH:
			A = skb->rxhash;
			continue;
		case BPF_S_ANC_CPU:
			A = raw_smp_processor_id();
			continue;
		case BPF_S_ANC_VLAN_TAG:
			A = vlan_tx_tag_get(skb);
			continue;
		case BPF_S_ANC_VLAN_TAG_PRESENT:
			A = !!vlan_tx_tag_present(skb);
			continue;
		case BPF_S_ANC_PAY_OFFSET:
			A = __skb_get_poff(skb);
			continue;
		case BPF_S_ANC_NLATTR: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (skb->len < sizeof(struct nlattr))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = nla_find((struct nlattr *)&skb->data[A],
				       skb->len - A, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		case BPF_S_ANC_NLATTR_NEST: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (skb->len < sizeof(struct nlattr))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = (struct nlattr *)&skb->data[A];
			if (nla->nla_len > skb->len - A)
				return 0;

			nla = nla_find_nested(nla, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
#ifdef CONFIG_SECCOMP_FILTER
		case BPF_S_ANC_SECCOMP_LD_W:
			A = seccomp_bpf_load(fentry->k);
			continue;
#endif
		default:
			WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
				       fentry->code, fentry->jt,
				       fentry->jf, fentry->k);
			return 0;
		}
	}

	return 0;
}
EXPORT_SYMBOL(sk_run_filter);

/*
 * Security :
 * A BPF program is able to use 16 cells of memory to store intermediate
 * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
 * As we dont want to clear mem[] array for each packet going through
 * sk_run_filter(), we check that filter loaded by user never try to read
 * a cell if not previously written, and we check all branches to be sure
 * a malicious user doesn't try to abuse us.
 */
static int check_load_and_stores(struct sock_filter *filter, int flen)
{
	u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
	masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
	if (!masks)
		return -ENOMEM;
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
		case BPF_S_ST:
		case BPF_S_STX:
			memvalid |= (1 << filter[pc].k);
			break;
		case BPF_S_LD_MEM:
		case BPF_S_LDX_MEM:
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
		case BPF_S_JMP_JA:
			/* a jump must set masks on target */
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
		case BPF_S_JMP_JEQ_K:
		case BPF_S_JMP_JEQ_X:
		case BPF_S_JMP_JGE_K:
		case BPF_S_JMP_JGE_X:
		case BPF_S_JMP_JGT_K:
		case BPF_S_JMP_JGT_X:
		case BPF_S_JMP_JSET_X:
		case BPF_S_JMP_JSET_K:
			/* a jump must set masks on targets */
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

/**
 *	sk_chk_filter - verify socket filter code
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
 *
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
 */
int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
{
	/*
	 * Valid instructions are initialized to non-0.
	 * Invalid instructions are initialized to 0.
	 */
	static const u8 codes[] = {
		[BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
		[BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
		[BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
		[BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
		[BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
		[BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
		[BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
		[BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
		[BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
		[BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
		[BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
		[BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
		[BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
		[BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
		[BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
		[BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
		[BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
		[BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
		[BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
		[BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
		[BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
		[BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
		[BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
		[BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
		[BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
		[BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
		[BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
		[BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
		[BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
		[BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
		[BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
		[BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
		[BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
		[BPF_RET|BPF_K]          = BPF_S_RET_K,
		[BPF_RET|BPF_A]          = BPF_S_RET_A,
		[BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
		[BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
		[BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
		[BPF_ST]                 = BPF_S_ST,
		[BPF_STX]                = BPF_S_STX,
		[BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
		[BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
		[BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
		[BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
		[BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
		[BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
		[BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
		[BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
		[BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
	};
	int pc;
	bool anc_found;

	if (flen == 0 || flen > BPF_MAXINSNS)
		return -EINVAL;

	/* check the filter code now */
	for (pc = 0; pc < flen; pc++) {
		struct sock_filter *ftest = &filter[pc];
		u16 code = ftest->code;

		if (code >= ARRAY_SIZE(codes))
			return -EINVAL;
		code = codes[code];
		if (!code)
			return -EINVAL;
		/* Some instructions need special checks */
		switch (code) {
		case BPF_S_ALU_DIV_K:
		case BPF_S_ALU_MOD_K:
			/* check for division by zero */
			if (ftest->k == 0)
				return -EINVAL;
			break;
		case BPF_S_LD_MEM:
		case BPF_S_LDX_MEM:
		case BPF_S_ST:
		case BPF_S_STX:
			/* check for invalid memory addresses */
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
		case BPF_S_JMP_JA:
			/*
			 * Note, the large ftest->k might cause loops.
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
			if (ftest->k >= (unsigned int)(flen-pc-1))
				return -EINVAL;
			break;
		case BPF_S_JMP_JEQ_K:
		case BPF_S_JMP_JEQ_X:
		case BPF_S_JMP_JGE_K:
		case BPF_S_JMP_JGE_X:
		case BPF_S_JMP_JGT_K:
		case BPF_S_JMP_JGT_X:
		case BPF_S_JMP_JSET_X:
		case BPF_S_JMP_JSET_K:
			/* for conditionals both must be safe */
			if (pc + ftest->jt + 1 >= flen ||
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
			break;
		case BPF_S_LD_W_ABS:
		case BPF_S_LD_H_ABS:
		case BPF_S_LD_B_ABS:
			anc_found = false;
#define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:	\
				code = BPF_S_ANC_##CODE;	\
				anc_found = true;		\
				break
			switch (ftest->k) {
			ANCILLARY(PROTOCOL);
			ANCILLARY(PKTTYPE);
			ANCILLARY(IFINDEX);
			ANCILLARY(NLATTR);
			ANCILLARY(NLATTR_NEST);
			ANCILLARY(MARK);
			ANCILLARY(QUEUE);
			ANCILLARY(HATYPE);
			ANCILLARY(RXHASH);
			ANCILLARY(CPU);
			ANCILLARY(ALU_XOR_X);
			ANCILLARY(VLAN_TAG);
			ANCILLARY(VLAN_TAG_PRESENT);
			ANCILLARY(PAY_OFFSET);
			}

			/* ancillary operation unknown or unsupported */
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
		}
		ftest->code = code;
	}

	/* last instruction must be a RET code */
	switch (filter[flen - 1].code) {
	case BPF_S_RET_K:
	case BPF_S_RET_A:
		return check_load_and_stores(filter, flen);
	}
	return -EINVAL;
}
EXPORT_SYMBOL(sk_chk_filter);

/**
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
 *	@rcu: rcu_head that contains the sk_filter to free
 */
void sk_filter_release_rcu(struct rcu_head *rcu)
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

	bpf_jit_free(fp);
}
EXPORT_SYMBOL(sk_filter_release_rcu);

static int __sk_prepare_filter(struct sk_filter *fp)
{
	int err;

	fp->bpf_func = sk_run_filter;

	err = sk_chk_filter(fp->insns, fp->len);
	if (err)
		return err;

	bpf_jit_compile(fp);
	return 0;
}

/**
 *	sk_unattached_filter_create - create an unattached filter
 *	@fprog: the filter program
 *	@pfp: the unattached filter that is created
 *
 * Create a filter independent of any socket. We first run some
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
int sk_unattached_filter_create(struct sk_filter **pfp,
				struct sock_fprog *fprog)
{
	struct sk_filter *fp;
	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
	int err;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;
	memcpy(fp->insns, fprog->filter, fsize);

	atomic_set(&fp->refcnt, 1);
	fp->len = fprog->len;

	err = __sk_prepare_filter(fp);
	if (err)
		goto free_mem;

	*pfp = fp;
	return 0;
free_mem:
	kfree(fp);
	return err;
}
EXPORT_SYMBOL_GPL(sk_unattached_filter_create);

void sk_unattached_filter_destroy(struct sk_filter *fp)
{
	sk_filter_release(fp);
}
EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;
	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
	unsigned int sk_fsize = sk_filter_size(fprog->len);
	int err;

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = sock_kmalloc(sk, sk_fsize, GFP_KERNEL);
	if (!fp)
		return -ENOMEM;
	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		sock_kfree_s(sk, fp, sk_fsize);
		return -EFAULT;
	}

	atomic_set(&fp->refcnt, 1);
	fp->len = fprog->len;

	err = __sk_prepare_filter(fp);
	if (err) {
		sk_filter_uncharge(sk, fp);
		return err;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);
	return 0;
}
EXPORT_SYMBOL_GPL(sk_attach_filter);

int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	if (filter) {
		RCU_INIT_POINTER(sk->sk_filter, NULL);
		sk_filter_uncharge(sk, filter);
		ret = 0;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(sk_detach_filter);

void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to)
{
	static const u16 decodes[] = {
		[BPF_S_ALU_ADD_K]	= BPF_ALU|BPF_ADD|BPF_K,
		[BPF_S_ALU_ADD_X]	= BPF_ALU|BPF_ADD|BPF_X,
		[BPF_S_ALU_SUB_K]	= BPF_ALU|BPF_SUB|BPF_K,
		[BPF_S_ALU_SUB_X]	= BPF_ALU|BPF_SUB|BPF_X,
		[BPF_S_ALU_MUL_K]	= BPF_ALU|BPF_MUL|BPF_K,
		[BPF_S_ALU_MUL_X]	= BPF_ALU|BPF_MUL|BPF_X,
		[BPF_S_ALU_DIV_X]	= BPF_ALU|BPF_DIV|BPF_X,
		[BPF_S_ALU_MOD_K]	= BPF_ALU|BPF_MOD|BPF_K,
		[BPF_S_ALU_MOD_X]	= BPF_ALU|BPF_MOD|BPF_X,
		[BPF_S_ALU_AND_K]	= BPF_ALU|BPF_AND|BPF_K,
		[BPF_S_ALU_AND_X]	= BPF_ALU|BPF_AND|BPF_X,
		[BPF_S_ALU_OR_K]	= BPF_ALU|BPF_OR|BPF_K,
		[BPF_S_ALU_OR_X]	= BPF_ALU|BPF_OR|BPF_X,
		[BPF_S_ALU_XOR_K]	= BPF_ALU|BPF_XOR|BPF_K,
		[BPF_S_ALU_XOR_X]	= BPF_ALU|BPF_XOR|BPF_X,
		[BPF_S_ALU_LSH_K]	= BPF_ALU|BPF_LSH|BPF_K,
		[BPF_S_ALU_LSH_X]	= BPF_ALU|BPF_LSH|BPF_X,
		[BPF_S_ALU_RSH_K]	= BPF_ALU|BPF_RSH|BPF_K,
		[BPF_S_ALU_RSH_X]	= BPF_ALU|BPF_RSH|BPF_X,
		[BPF_S_ALU_NEG]		= BPF_ALU|BPF_NEG,
		[BPF_S_LD_W_ABS]	= BPF_LD|BPF_W|BPF_ABS,
		[BPF_S_LD_H_ABS]	= BPF_LD|BPF_H|BPF_ABS,
		[BPF_S_LD_B_ABS]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_PROTOCOL]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_PKTTYPE]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_IFINDEX]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_NLATTR]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_NLATTR_NEST]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_MARK]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_QUEUE]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_HATYPE]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_RXHASH]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_CPU]		= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_ALU_XOR_X]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_SECCOMP_LD_W] = BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_VLAN_TAG]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_VLAN_TAG_PRESENT] = BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_ANC_PAY_OFFSET]	= BPF_LD|BPF_B|BPF_ABS,
		[BPF_S_LD_W_LEN]	= BPF_LD|BPF_W|BPF_LEN,
		[BPF_S_LD_W_IND]	= BPF_LD|BPF_W|BPF_IND,
		[BPF_S_LD_H_IND]	= BPF_LD|BPF_H|BPF_IND,
		[BPF_S_LD_B_IND]	= BPF_LD|BPF_B|BPF_IND,
		[BPF_S_LD_IMM]		= BPF_LD|BPF_IMM,
		[BPF_S_LDX_W_LEN]	= BPF_LDX|BPF_W|BPF_LEN,
		[BPF_S_LDX_B_MSH]	= BPF_LDX|BPF_B|BPF_MSH,
		[BPF_S_LDX_IMM]		= BPF_LDX|BPF_IMM,
		[BPF_S_MISC_TAX]	= BPF_MISC|BPF_TAX,
		[BPF_S_MISC_TXA]	= BPF_MISC|BPF_TXA,
		[BPF_S_RET_K]		= BPF_RET|BPF_K,
		[BPF_S_RET_A]		= BPF_RET|BPF_A,
		[BPF_S_ALU_DIV_K]	= BPF_ALU|BPF_DIV|BPF_K,
		[BPF_S_LD_MEM]		= BPF_LD|BPF_MEM,
		[BPF_S_LDX_MEM]		= BPF_LDX|BPF_MEM,
		[BPF_S_ST]		= BPF_ST,
		[BPF_S_STX]		= BPF_STX,
		[BPF_S_JMP_JA]		= BPF_JMP|BPF_JA,
		[BPF_S_JMP_JEQ_K]	= BPF_JMP|BPF_JEQ|BPF_K,
		[BPF_S_JMP_JEQ_X]	= BPF_JMP|BPF_JEQ|BPF_X,
		[BPF_S_JMP_JGE_K]	= BPF_JMP|BPF_JGE|BPF_K,
		[BPF_S_JMP_JGE_X]	= BPF_JMP|BPF_JGE|BPF_X,
		[BPF_S_JMP_JGT_K]	= BPF_JMP|BPF_JGT|BPF_K,
		[BPF_S_JMP_JGT_X]	= BPF_JMP|BPF_JGT|BPF_X,
		[BPF_S_JMP_JSET_K]	= BPF_JMP|BPF_JSET|BPF_K,
		[BPF_S_JMP_JSET_X]	= BPF_JMP|BPF_JSET|BPF_X,
	};
	u16 code;

	code = filt->code;

	to->code = decodes[code];
	to->jt = filt->jt;
	to->jf = filt->jf;
	to->k = filt->k;
}

int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len)
{
	struct sk_filter *filter;
	int i, ret;

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
			sock_owned_by_user(sk));
	ret = 0;
	if (!filter)
		goto out;
	ret = filter->len;
	if (!len)
		goto out;
	ret = -EINVAL;
	if (len < filter->len)
		goto out;

	ret = -EFAULT;
	for (i = 0; i < filter->len; i++) {
		struct sock_filter fb;

		sk_decode_filter(&filter->insns[i], &fb);
		if (copy_to_user(&ubuf[i], &fb, sizeof(fb)))
			goto out;
	}

	ret = filter->len;
out:
	release_sock(sk);
	return ret;
}