Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
/*
 * Main bcache entry point - handle a read or a write request and decide what to
 * do with it; the make_request functions are called by the block layer.
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "request.h"
#include "writeback.h"

#include <linux/cgroup.h>
#include <linux/module.h>
#include <linux/hash.h>
#include <linux/random.h>
#include "blk-cgroup.h"

#include <trace/events/bcache.h>

#define CUTOFF_CACHE_ADD	95
#define CUTOFF_CACHE_READA	90

struct kmem_cache *bch_search_cache;

static void check_should_skip(struct cached_dev *, struct search *);

/* Cgroup interface */

#ifdef CONFIG_CGROUP_BCACHE
static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };

static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
{
	struct cgroup_subsys_state *css;
	return cgroup &&
		(css = cgroup_subsys_state(cgroup, bcache_subsys_id))
		? container_of(css, struct bch_cgroup, css)
		: &bcache_default_cgroup;
}

struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
{
	struct cgroup_subsys_state *css = bio->bi_css
		? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
		: task_subsys_state(current, bcache_subsys_id);

	return css
		? container_of(css, struct bch_cgroup, css)
		: &bcache_default_cgroup;
}

static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
			struct file *file,
			char __user *buf, size_t nbytes, loff_t *ppos)
{
	char tmp[1024];
	int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
					  cgroup_to_bcache(cgrp)->cache_mode + 1);

	if (len < 0)
		return len;

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
{
	int v = bch_read_string_list(buf, bch_cache_modes);
	if (v < 0)
		return v;

	cgroup_to_bcache(cgrp)->cache_mode = v - 1;
	return 0;
}

static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
{
	return cgroup_to_bcache(cgrp)->verify;
}

static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	cgroup_to_bcache(cgrp)->verify = val;
	return 0;
}

static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_hits);
}

static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_misses);
}

static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
					 struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_bypass_hits);
}

static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
					   struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_bypass_misses);
}

static struct cftype bch_files[] = {
	{
		.name		= "cache_mode",
		.read		= cache_mode_read,
		.write_string	= cache_mode_write,
	},
	{
		.name		= "verify",
		.read_u64	= bch_verify_read,
		.write_u64	= bch_verify_write,
	},
	{
		.name		= "cache_hits",
		.read_u64	= bch_cache_hits_read,
	},
	{
		.name		= "cache_misses",
		.read_u64	= bch_cache_misses_read,
	},
	{
		.name		= "cache_bypass_hits",
		.read_u64	= bch_cache_bypass_hits_read,
	},
	{
		.name		= "cache_bypass_misses",
		.read_u64	= bch_cache_bypass_misses_read,
	},
	{ }	/* terminate */
};

static void init_bch_cgroup(struct bch_cgroup *cg)
{
	cg->cache_mode = -1;
}

static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
{
	struct bch_cgroup *cg;

	cg = kzalloc(sizeof(*cg), GFP_KERNEL);
	if (!cg)
		return ERR_PTR(-ENOMEM);
	init_bch_cgroup(cg);
	return &cg->css;
}

static void bcachecg_destroy(struct cgroup *cgroup)
{
	struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
	free_css_id(&bcache_subsys, &cg->css);
	kfree(cg);
}

struct cgroup_subsys bcache_subsys = {
	.create		= bcachecg_create,
	.destroy	= bcachecg_destroy,
	.subsys_id	= bcache_subsys_id,
	.name		= "bcache",
	.module		= THIS_MODULE,
};
EXPORT_SYMBOL_GPL(bcache_subsys);
#endif

static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
{
#ifdef CONFIG_CGROUP_BCACHE
	int r = bch_bio_to_cgroup(bio)->cache_mode;
	if (r >= 0)
		return r;
#endif
	return BDEV_CACHE_MODE(&dc->sb);
}

static bool verify(struct cached_dev *dc, struct bio *bio)
{
#ifdef CONFIG_CGROUP_BCACHE
	if (bch_bio_to_cgroup(bio)->verify)
		return true;
#endif
	return dc->verify;
}

static void bio_csum(struct bio *bio, struct bkey *k)
{
	struct bio_vec *bv;
	uint64_t csum = 0;
	int i;

	bio_for_each_segment(bv, bio, i) {
		void *d = kmap(bv->bv_page) + bv->bv_offset;
		csum = bch_crc64_update(csum, d, bv->bv_len);
		kunmap(bv->bv_page);
	}

	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
}

/* Insert data into cache */

static void bio_invalidate(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct bio *bio = op->cache_bio;

	pr_debug("invalidating %i sectors from %llu",
		 bio_sectors(bio), (uint64_t) bio->bi_sector);

	while (bio_sectors(bio)) {
		unsigned len = min(bio_sectors(bio), 1U << 14);

		if (bch_keylist_realloc(&op->keys, 0, op->c))
			goto out;

		bio->bi_sector	+= len;
		bio->bi_size	-= len << 9;

		bch_keylist_add(&op->keys,
				&KEY(op->inode, bio->bi_sector, len));
	}

	op->insert_data_done = true;
	bio_put(bio);
out:
	continue_at(cl, bch_journal, bcache_wq);
}

struct open_bucket {
	struct list_head	list;
	struct task_struct	*last;
	unsigned		sectors_free;
	BKEY_PADDED(key);
};

void bch_open_buckets_free(struct cache_set *c)
{
	struct open_bucket *b;

	while (!list_empty(&c->data_buckets)) {
		b = list_first_entry(&c->data_buckets,
				     struct open_bucket, list);
		list_del(&b->list);
		kfree(b);
	}
}

int bch_open_buckets_alloc(struct cache_set *c)
{
	int i;

	spin_lock_init(&c->data_bucket_lock);

	for (i = 0; i < 6; i++) {
		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
		if (!b)
			return -ENOMEM;

		list_add(&b->list, &c->data_buckets);
	}

	return 0;
}

/*
 * We keep multiple buckets open for writes, and try to segregate different
 * write streams for better cache utilization: first we look for a bucket where
 * the last write to it was sequential with the current write, and failing that
 * we look for a bucket that was last used by the same task.
 *
 * The ideas is if you've got multiple tasks pulling data into the cache at the
 * same time, you'll get better cache utilization if you try to segregate their
 * data and preserve locality.
 *
 * For example, say you've starting Firefox at the same time you're copying a
 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 * cache awhile, but the data you copied might not be; if you wrote all that
 * data to the same buckets it'd get invalidated at the same time.
 *
 * Both of those tasks will be doing fairly random IO so we can't rely on
 * detecting sequential IO to segregate their data, but going off of the task
 * should be a sane heuristic.
 */
static struct open_bucket *pick_data_bucket(struct cache_set *c,
					    const struct bkey *search,
					    struct task_struct *task,
					    struct bkey *alloc)
{
	struct open_bucket *ret, *ret_task = NULL;

	list_for_each_entry_reverse(ret, &c->data_buckets, list)
		if (!bkey_cmp(&ret->key, search))
			goto found;
		else if (ret->last == task)
			ret_task = ret;

	ret = ret_task ?: list_first_entry(&c->data_buckets,
					   struct open_bucket, list);
found:
	if (!ret->sectors_free && KEY_PTRS(alloc)) {
		ret->sectors_free = c->sb.bucket_size;
		bkey_copy(&ret->key, alloc);
		bkey_init(alloc);
	}

	if (!ret->sectors_free)
		ret = NULL;

	return ret;
}

/*
 * Allocates some space in the cache to write to, and k to point to the newly
 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 * end of the newly allocated space).
 *
 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 * sectors were actually allocated.
 *
 * If s->writeback is true, will not fail.
 */
static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
			      struct search *s)
{
	struct cache_set *c = s->op.c;
	struct open_bucket *b;
	BKEY_PADDED(key) alloc;
	struct closure cl, *w = NULL;
	unsigned i;

	if (s->writeback) {
		closure_init_stack(&cl);
		w = &cl;
	}

	/*
	 * We might have to allocate a new bucket, which we can't do with a
	 * spinlock held. So if we have to allocate, we drop the lock, allocate
	 * and then retry. KEY_PTRS() indicates whether alloc points to
	 * allocated bucket(s).
	 */

	bkey_init(&alloc.key);
	spin_lock(&c->data_bucket_lock);

	while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
		unsigned watermark = s->op.write_prio
			? WATERMARK_MOVINGGC
			: WATERMARK_NONE;

		spin_unlock(&c->data_bucket_lock);

		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
			return false;

		spin_lock(&c->data_bucket_lock);
	}

	/*
	 * If we had to allocate, we might race and not need to allocate the
	 * second time we call find_data_bucket(). If we allocated a bucket but
	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
	 */
	if (KEY_PTRS(&alloc.key))
		__bkey_put(c, &alloc.key);

	for (i = 0; i < KEY_PTRS(&b->key); i++)
		EBUG_ON(ptr_stale(c, &b->key, i));

	/* Set up the pointer to the space we're allocating: */

	for (i = 0; i < KEY_PTRS(&b->key); i++)
		k->ptr[i] = b->key.ptr[i];

	sectors = min(sectors, b->sectors_free);

	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
	SET_KEY_SIZE(k, sectors);
	SET_KEY_PTRS(k, KEY_PTRS(&b->key));

	/*
	 * Move b to the end of the lru, and keep track of what this bucket was
	 * last used for:
	 */
	list_move_tail(&b->list, &c->data_buckets);
	bkey_copy_key(&b->key, k);
	b->last = s->task;

	b->sectors_free	-= sectors;

	for (i = 0; i < KEY_PTRS(&b->key); i++) {
		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);

		atomic_long_add(sectors,
				&PTR_CACHE(c, &b->key, i)->sectors_written);
	}

	if (b->sectors_free < c->sb.block_size)
		b->sectors_free = 0;

	/*
	 * k takes refcounts on the buckets it points to until it's inserted
	 * into the btree, but if we're done with this bucket we just transfer
	 * get_data_bucket()'s refcount.
	 */
	if (b->sectors_free)
		for (i = 0; i < KEY_PTRS(&b->key); i++)
			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);

	spin_unlock(&c->data_bucket_lock);
	return true;
}

static void bch_insert_data_error(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	/*
	 * Our data write just errored, which means we've got a bunch of keys to
	 * insert that point to data that wasn't succesfully written.
	 *
	 * We don't have to insert those keys but we still have to invalidate
	 * that region of the cache - so, if we just strip off all the pointers
	 * from the keys we'll accomplish just that.
	 */

	struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;

	while (src != op->keys.top) {
		struct bkey *n = bkey_next(src);

		SET_KEY_PTRS(src, 0);
		bkey_copy(dst, src);

		dst = bkey_next(dst);
		src = n;
	}

	op->keys.top = dst;

	bch_journal(cl);
}

static void bch_insert_data_endio(struct bio *bio, int error)
{
	struct closure *cl = bio->bi_private;
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);

	if (error) {
		/* TODO: We could try to recover from this. */
		if (s->writeback)
			s->error = error;
		else if (s->write)
			set_closure_fn(cl, bch_insert_data_error, bcache_wq);
		else
			set_closure_fn(cl, NULL, NULL);
	}

	bch_bbio_endio(op->c, bio, error, "writing data to cache");
}

static void bch_insert_data_loop(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);
	struct bio *bio = op->cache_bio, *n;

	if (op->skip)
		return bio_invalidate(cl);

	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
		set_gc_sectors(op->c);
		bch_queue_gc(op->c);
	}

	/*
	 * Journal writes are marked REQ_FLUSH; if the original write was a
	 * flush, it'll wait on the journal write.
	 */
	bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);

	do {
		unsigned i;
		struct bkey *k;
		struct bio_set *split = s->d
			? s->d->bio_split : op->c->bio_split;

		/* 1 for the device pointer and 1 for the chksum */
		if (bch_keylist_realloc(&op->keys,
					1 + (op->csum ? 1 : 0),
					op->c))
			continue_at(cl, bch_journal, bcache_wq);

		k = op->keys.top;
		bkey_init(k);
		SET_KEY_INODE(k, op->inode);
		SET_KEY_OFFSET(k, bio->bi_sector);

		if (!bch_alloc_sectors(k, bio_sectors(bio), s))
			goto err;

		n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);

		n->bi_end_io	= bch_insert_data_endio;
		n->bi_private	= cl;

		if (s->writeback) {
			SET_KEY_DIRTY(k, true);

			for (i = 0; i < KEY_PTRS(k); i++)
				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
					    GC_MARK_DIRTY);
		}

		SET_KEY_CSUM(k, op->csum);
		if (KEY_CSUM(k))
			bio_csum(n, k);

		trace_bcache_cache_insert(k);
		bch_keylist_push(&op->keys);

		n->bi_rw |= REQ_WRITE;
		bch_submit_bbio(n, op->c, k, 0);
	} while (n != bio);

	op->insert_data_done = true;
	continue_at(cl, bch_journal, bcache_wq);
err:
	/* bch_alloc_sectors() blocks if s->writeback = true */
	BUG_ON(s->writeback);

	/*
	 * But if it's not a writeback write we'd rather just bail out if
	 * there aren't any buckets ready to write to - it might take awhile and
	 * we might be starving btree writes for gc or something.
	 */

	if (s->write) {
		/*
		 * Writethrough write: We can't complete the write until we've
		 * updated the index. But we don't want to delay the write while
		 * we wait for buckets to be freed up, so just invalidate the
		 * rest of the write.
		 */
		op->skip = true;
		return bio_invalidate(cl);
	} else {
		/*
		 * From a cache miss, we can just insert the keys for the data
		 * we have written or bail out if we didn't do anything.
		 */
		op->insert_data_done = true;
		bio_put(bio);

		if (!bch_keylist_empty(&op->keys))
			continue_at(cl, bch_journal, bcache_wq);
		else
			closure_return(cl);
	}
}

/**
 * bch_insert_data - stick some data in the cache
 *
 * This is the starting point for any data to end up in a cache device; it could
 * be from a normal write, or a writeback write, or a write to a flash only
 * volume - it's also used by the moving garbage collector to compact data in
 * mostly empty buckets.
 *
 * It first writes the data to the cache, creating a list of keys to be inserted
 * (if the data had to be fragmented there will be multiple keys); after the
 * data is written it calls bch_journal, and after the keys have been added to
 * the next journal write they're inserted into the btree.
 *
 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
 * and op->inode is used for the key inode.
 *
 * If op->skip is true, instead of inserting the data it invalidates the region
 * of the cache represented by op->cache_bio and op->inode.
 */
void bch_insert_data(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	bch_keylist_init(&op->keys);
	bio_get(op->cache_bio);
	bch_insert_data_loop(cl);
}

void bch_btree_insert_async(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);

	if (bch_btree_insert(op, op->c)) {
		s->error		= -ENOMEM;
		op->insert_data_done	= true;
	}

	if (op->insert_data_done) {
		bch_keylist_free(&op->keys);
		closure_return(cl);
	} else
		continue_at(cl, bch_insert_data_loop, bcache_wq);
}

/* Common code for the make_request functions */

static void request_endio(struct bio *bio, int error)
{
	struct closure *cl = bio->bi_private;

	if (error) {
		struct search *s = container_of(cl, struct search, cl);
		s->error = error;
		/* Only cache read errors are recoverable */
		s->recoverable = false;
	}

	bio_put(bio);
	closure_put(cl);
}

void bch_cache_read_endio(struct bio *bio, int error)
{
	struct bbio *b = container_of(bio, struct bbio, bio);
	struct closure *cl = bio->bi_private;
	struct search *s = container_of(cl, struct search, cl);

	/*
	 * If the bucket was reused while our bio was in flight, we might have
	 * read the wrong data. Set s->error but not error so it doesn't get
	 * counted against the cache device, but we'll still reread the data
	 * from the backing device.
	 */

	if (error)
		s->error = error;
	else if (ptr_stale(s->op.c, &b->key, 0)) {
		atomic_long_inc(&s->op.c->cache_read_races);
		s->error = -EINTR;
	}

	bch_bbio_endio(s->op.c, bio, error, "reading from cache");
}

static void bio_complete(struct search *s)
{
	if (s->orig_bio) {
		int cpu, rw = bio_data_dir(s->orig_bio);
		unsigned long duration = jiffies - s->start_time;

		cpu = part_stat_lock();
		part_round_stats(cpu, &s->d->disk->part0);
		part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
		part_stat_unlock();

		trace_bcache_request_end(s, s->orig_bio);
		bio_endio(s->orig_bio, s->error);
		s->orig_bio = NULL;
	}
}

static void do_bio_hook(struct search *s)
{
	struct bio *bio = &s->bio.bio;
	memcpy(bio, s->orig_bio, sizeof(struct bio));

	bio->bi_end_io		= request_endio;
	bio->bi_private		= &s->cl;
	atomic_set(&bio->bi_cnt, 3);
}

static void search_free(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	bio_complete(s);

	if (s->op.cache_bio)
		bio_put(s->op.cache_bio);

	if (s->unaligned_bvec)
		mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);

	closure_debug_destroy(cl);
	mempool_free(s, s->d->c->search);
}

static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
{
	struct bio_vec *bv;
	struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
	memset(s, 0, offsetof(struct search, op.keys));

	__closure_init(&s->cl, NULL);

	s->op.inode		= d->id;
	s->op.c			= d->c;
	s->d			= d;
	s->op.lock		= -1;
	s->task			= current;
	s->orig_bio		= bio;
	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
	s->op.flush_journal	= (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
	s->op.skip		= (bio->bi_rw & REQ_DISCARD) != 0;
	s->recoverable		= 1;
	s->start_time		= jiffies;
	do_bio_hook(s);

	if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
		bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
		memcpy(bv, bio_iovec(bio),
		       sizeof(struct bio_vec) * bio_segments(bio));

		s->bio.bio.bi_io_vec	= bv;
		s->unaligned_bvec	= 1;
	}

	return s;
}

static void btree_read_async(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	int ret = btree_root(search_recurse, op->c, op);

	if (ret == -EAGAIN)
		continue_at(cl, btree_read_async, bcache_wq);

	closure_return(cl);
}

/* Cached devices */

static void cached_dev_bio_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	search_free(cl);
	cached_dev_put(dc);
}

/* Process reads */

static void cached_dev_read_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);

	if (s->op.insert_collision)
		bch_mark_cache_miss_collision(s);

	if (s->op.cache_bio) {
		int i;
		struct bio_vec *bv;

		__bio_for_each_segment(bv, s->op.cache_bio, i, 0)
			__free_page(bv->bv_page);
	}

	cached_dev_bio_complete(cl);
}

static void request_read_error(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct bio_vec *bv;
	int i;

	if (s->recoverable) {
		/* Retry from the backing device: */
		trace_bcache_read_retry(s->orig_bio);

		s->error = 0;
		bv = s->bio.bio.bi_io_vec;
		do_bio_hook(s);
		s->bio.bio.bi_io_vec = bv;

		if (!s->unaligned_bvec)
			bio_for_each_segment(bv, s->orig_bio, i)
				bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
		else
			memcpy(s->bio.bio.bi_io_vec,
			       bio_iovec(s->orig_bio),
			       sizeof(struct bio_vec) *
			       bio_segments(s->orig_bio));

		/* XXX: invalidate cache */

		closure_bio_submit(&s->bio.bio, &s->cl, s->d);
	}

	continue_at(cl, cached_dev_read_complete, NULL);
}

static void request_read_done(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	/*
	 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
	 * contains data ready to be inserted into the cache.
	 *
	 * First, we copy the data we just read from cache_bio's bounce buffers
	 * to the buffers the original bio pointed to:
	 */

	if (s->op.cache_bio) {
		bio_reset(s->op.cache_bio);
		s->op.cache_bio->bi_sector	= s->cache_miss->bi_sector;
		s->op.cache_bio->bi_bdev	= s->cache_miss->bi_bdev;
		s->op.cache_bio->bi_size	= s->cache_bio_sectors << 9;
		bch_bio_map(s->op.cache_bio, NULL);

		bio_copy_data(s->cache_miss, s->op.cache_bio);

		bio_put(s->cache_miss);
		s->cache_miss = NULL;
	}

	if (verify(dc, &s->bio.bio) && s->recoverable)
		bch_data_verify(s);

	bio_complete(s);

	if (s->op.cache_bio &&
	    !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
		s->op.type = BTREE_REPLACE;
		closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	}

	continue_at(cl, cached_dev_read_complete, NULL);
}

static void request_read_done_bh(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
	trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip);

	if (s->error)
		continue_at_nobarrier(cl, request_read_error, bcache_wq);
	else if (s->op.cache_bio || verify(dc, &s->bio.bio))
		continue_at_nobarrier(cl, request_read_done, bcache_wq);
	else
		continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
}

static int cached_dev_cache_miss(struct btree *b, struct search *s,
				 struct bio *bio, unsigned sectors)
{
	int ret = 0;
	unsigned reada;
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
	struct bio *miss;

	miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
	if (miss == bio)
		s->op.lookup_done = true;

	miss->bi_end_io		= request_endio;
	miss->bi_private	= &s->cl;

	if (s->cache_miss || s->op.skip)
		goto out_submit;

	if (miss != bio ||
	    (bio->bi_rw & REQ_RAHEAD) ||
	    (bio->bi_rw & REQ_META) ||
	    s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
		reada = 0;
	else {
		reada = min(dc->readahead >> 9,
			    sectors - bio_sectors(miss));

		if (bio_end_sector(miss) + reada > bdev_sectors(miss->bi_bdev))
			reada = bdev_sectors(miss->bi_bdev) -
				bio_end_sector(miss);
	}

	s->cache_bio_sectors = bio_sectors(miss) + reada;
	s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
			DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
			dc->disk.bio_split);

	if (!s->op.cache_bio)
		goto out_submit;

	s->op.cache_bio->bi_sector	= miss->bi_sector;
	s->op.cache_bio->bi_bdev	= miss->bi_bdev;
	s->op.cache_bio->bi_size	= s->cache_bio_sectors << 9;

	s->op.cache_bio->bi_end_io	= request_endio;
	s->op.cache_bio->bi_private	= &s->cl;

	/* btree_search_recurse()'s btree iterator is no good anymore */
	ret = -EINTR;
	if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
		goto out_put;

	bch_bio_map(s->op.cache_bio, NULL);
	if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
		goto out_put;

	s->cache_miss = miss;
	bio_get(s->op.cache_bio);

	closure_bio_submit(s->op.cache_bio, &s->cl, s->d);

	return ret;
out_put:
	bio_put(s->op.cache_bio);
	s->op.cache_bio = NULL;
out_submit:
	closure_bio_submit(miss, &s->cl, s->d);
	return ret;
}

static void request_read(struct cached_dev *dc, struct search *s)
{
	struct closure *cl = &s->cl;

	check_should_skip(dc, s);
	closure_call(&s->op.cl, btree_read_async, NULL, cl);

	continue_at(cl, request_read_done_bh, NULL);
}

/* Process writes */

static void cached_dev_write_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	up_read_non_owner(&dc->writeback_lock);
	cached_dev_bio_complete(cl);
}

static void request_write(struct cached_dev *dc, struct search *s)
{
	struct closure *cl = &s->cl;
	struct bio *bio = &s->bio.bio;
	struct bkey start, end;
	start = KEY(dc->disk.id, bio->bi_sector, 0);
	end = KEY(dc->disk.id, bio_end_sector(bio), 0);

	bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);

	check_should_skip(dc, s);
	down_read_non_owner(&dc->writeback_lock);

	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
		s->op.skip	= false;
		s->writeback	= true;
	}

	if (bio->bi_rw & REQ_DISCARD)
		goto skip;

	if (should_writeback(dc, s->orig_bio,
			     cache_mode(dc, bio),
			     s->op.skip)) {
		s->op.skip = false;
		s->writeback = true;
	}

	if (s->op.skip)
		goto skip;

	trace_bcache_write(s->orig_bio, s->writeback, s->op.skip);

	if (!s->writeback) {
		s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
						   dc->disk.bio_split);

		closure_bio_submit(bio, cl, s->d);
	} else {
		bch_writeback_add(dc);
		s->op.cache_bio = bio;

		if (bio->bi_rw & REQ_FLUSH) {
			/* Also need to send a flush to the backing device */
			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
							     dc->disk.bio_split);

			flush->bi_rw	= WRITE_FLUSH;
			flush->bi_bdev	= bio->bi_bdev;
			flush->bi_end_io = request_endio;
			flush->bi_private = cl;

			closure_bio_submit(flush, cl, s->d);
		}
	}
out:
	closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	continue_at(cl, cached_dev_write_complete, NULL);
skip:
	s->op.skip = true;
	s->op.cache_bio = s->orig_bio;
	bio_get(s->op.cache_bio);

	if ((bio->bi_rw & REQ_DISCARD) &&
	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
		goto out;

	closure_bio_submit(bio, cl, s->d);
	goto out;
}

static void request_nodata(struct cached_dev *dc, struct search *s)
{
	struct closure *cl = &s->cl;
	struct bio *bio = &s->bio.bio;

	if (bio->bi_rw & REQ_DISCARD) {
		request_write(dc, s);
		return;
	}

	if (s->op.flush_journal)
		bch_journal_meta(s->op.c, cl);

	closure_bio_submit(bio, cl, s->d);

	continue_at(cl, cached_dev_bio_complete, NULL);
}

/* Cached devices - read & write stuff */

unsigned bch_get_congested(struct cache_set *c)
{
	int i;
	long rand;

	if (!c->congested_read_threshold_us &&
	    !c->congested_write_threshold_us)
		return 0;

	i = (local_clock_us() - c->congested_last_us) / 1024;
	if (i < 0)
		return 0;

	i += atomic_read(&c->congested);
	if (i >= 0)
		return 0;

	i += CONGESTED_MAX;

	if (i > 0)
		i = fract_exp_two(i, 6);

	rand = get_random_int();
	i -= bitmap_weight(&rand, BITS_PER_LONG);

	return i > 0 ? i : 1;
}

static void add_sequential(struct task_struct *t)
{
	ewma_add(t->sequential_io_avg,
		 t->sequential_io, 8, 0);

	t->sequential_io = 0;
}

static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
{
	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
}

static void check_should_skip(struct cached_dev *dc, struct search *s)
{
	struct cache_set *c = s->op.c;
	struct bio *bio = &s->bio.bio;
	unsigned mode = cache_mode(dc, bio);
	unsigned sectors, congested = bch_get_congested(c);

	if (atomic_read(&dc->disk.detaching) ||
	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
	    (bio->bi_rw & REQ_DISCARD))
		goto skip;

	if (mode == CACHE_MODE_NONE ||
	    (mode == CACHE_MODE_WRITEAROUND &&
	     (bio->bi_rw & REQ_WRITE)))
		goto skip;

	if (bio->bi_sector   & (c->sb.block_size - 1) ||
	    bio_sectors(bio) & (c->sb.block_size - 1)) {
		pr_debug("skipping unaligned io");
		goto skip;
	}

	if (!congested && !dc->sequential_cutoff)
		goto rescale;

	if (!congested &&
	    mode == CACHE_MODE_WRITEBACK &&
	    (bio->bi_rw & REQ_WRITE) &&
	    (bio->bi_rw & REQ_SYNC))
		goto rescale;

	if (dc->sequential_merge) {
		struct io *i;

		spin_lock(&dc->io_lock);

		hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
			if (i->last == bio->bi_sector &&
			    time_before(jiffies, i->jiffies))
				goto found;

		i = list_first_entry(&dc->io_lru, struct io, lru);

		add_sequential(s->task);
		i->sequential = 0;
found:
		if (i->sequential + bio->bi_size > i->sequential)
			i->sequential	+= bio->bi_size;

		i->last			 = bio_end_sector(bio);
		i->jiffies		 = jiffies + msecs_to_jiffies(5000);
		s->task->sequential_io	 = i->sequential;

		hlist_del(&i->hash);
		hlist_add_head(&i->hash, iohash(dc, i->last));
		list_move_tail(&i->lru, &dc->io_lru);

		spin_unlock(&dc->io_lock);
	} else {
		s->task->sequential_io = bio->bi_size;

		add_sequential(s->task);
	}

	sectors = max(s->task->sequential_io,
		      s->task->sequential_io_avg) >> 9;

	if (dc->sequential_cutoff &&
	    sectors >= dc->sequential_cutoff >> 9) {
		trace_bcache_bypass_sequential(s->orig_bio);
		goto skip;
	}

	if (congested && sectors >= congested) {
		trace_bcache_bypass_congested(s->orig_bio);
		goto skip;
	}

rescale:
	bch_rescale_priorities(c, bio_sectors(bio));
	return;
skip:
	bch_mark_sectors_bypassed(s, bio_sectors(bio));
	s->op.skip = true;
}

static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
{
	struct search *s;
	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	int cpu, rw = bio_data_dir(bio);

	cpu = part_stat_lock();
	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
	part_stat_unlock();

	bio->bi_bdev = dc->bdev;
	bio->bi_sector += dc->sb.data_offset;

	if (cached_dev_get(dc)) {
		s = search_alloc(bio, d);
		trace_bcache_request_start(s, bio);

		if (!bio_has_data(bio))
			request_nodata(dc, s);
		else if (rw)
			request_write(dc, s);
		else
			request_read(dc, s);
	} else {
		if ((bio->bi_rw & REQ_DISCARD) &&
		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
			bio_endio(bio, 0);
		else
			bch_generic_make_request(bio, &d->bio_split_hook);
	}
}

static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
			    unsigned int cmd, unsigned long arg)
{
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
}

static int cached_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	struct request_queue *q = bdev_get_queue(dc->bdev);
	int ret = 0;

	if (bdi_congested(&q->backing_dev_info, bits))
		return 1;

	if (cached_dev_get(dc)) {
		unsigned i;
		struct cache *ca;

		for_each_cache(ca, d->c, i) {
			q = bdev_get_queue(ca->bdev);
			ret |= bdi_congested(&q->backing_dev_info, bits);
		}

		cached_dev_put(dc);
	}

	return ret;
}

void bch_cached_dev_request_init(struct cached_dev *dc)
{
	struct gendisk *g = dc->disk.disk;

	g->queue->make_request_fn		= cached_dev_make_request;
	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
	dc->disk.cache_miss			= cached_dev_cache_miss;
	dc->disk.ioctl				= cached_dev_ioctl;
}

/* Flash backed devices */

static int flash_dev_cache_miss(struct btree *b, struct search *s,
				struct bio *bio, unsigned sectors)
{
	struct bio_vec *bv;
	int i;

	/* Zero fill bio */

	bio_for_each_segment(bv, bio, i) {
		unsigned j = min(bv->bv_len >> 9, sectors);

		void *p = kmap(bv->bv_page);
		memset(p + bv->bv_offset, 0, j << 9);
		kunmap(bv->bv_page);

		sectors	-= j;
	}

	bio_advance(bio, min(sectors << 9, bio->bi_size));

	if (!bio->bi_size)
		s->op.lookup_done = true;

	return 0;
}

static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
{
	struct search *s;
	struct closure *cl;
	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
	int cpu, rw = bio_data_dir(bio);

	cpu = part_stat_lock();
	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
	part_stat_unlock();

	s = search_alloc(bio, d);
	cl = &s->cl;
	bio = &s->bio.bio;

	trace_bcache_request_start(s, bio);

	if (bio_has_data(bio) && !rw) {
		closure_call(&s->op.cl, btree_read_async, NULL, cl);
	} else if (bio_has_data(bio) || s->op.skip) {
		bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
					&KEY(d->id, bio->bi_sector, 0),
					&KEY(d->id, bio_end_sector(bio), 0));

		s->writeback	= true;
		s->op.cache_bio	= bio;

		closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	} else {
		/* No data - probably a cache flush */
		if (s->op.flush_journal)
			bch_journal_meta(s->op.c, cl);
	}

	continue_at(cl, search_free, NULL);
}

static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
			   unsigned int cmd, unsigned long arg)
{
	return -ENOTTY;
}

static int flash_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct request_queue *q;
	struct cache *ca;
	unsigned i;
	int ret = 0;

	for_each_cache(ca, d->c, i) {
		q = bdev_get_queue(ca->bdev);
		ret |= bdi_congested(&q->backing_dev_info, bits);
	}

	return ret;
}

void bch_flash_dev_request_init(struct bcache_device *d)
{
	struct gendisk *g = d->disk;

	g->queue->make_request_fn		= flash_dev_make_request;
	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
	d->cache_miss				= flash_dev_cache_miss;
	d->ioctl				= flash_dev_ioctl;
}

void bch_request_exit(void)
{
#ifdef CONFIG_CGROUP_BCACHE
	cgroup_unload_subsys(&bcache_subsys);
#endif
	if (bch_search_cache)
		kmem_cache_destroy(bch_search_cache);
}

int __init bch_request_init(void)
{
	bch_search_cache = KMEM_CACHE(search, 0);
	if (!bch_search_cache)
		return -ENOMEM;

#ifdef CONFIG_CGROUP_BCACHE
	cgroup_load_subsys(&bcache_subsys);
	init_bch_cgroup(&bcache_default_cgroup);

	cgroup_add_cftypes(&bcache_subsys, bch_files);
#endif
	return 0;
}