Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * Meta performance counter support.
 *  Copyright (C) 2012 Imagination Technologies Ltd
 *
 * This code is based on the sh pmu code:
 *  Copyright (C) 2009 Paul Mundt
 *
 * and on the arm pmu code:
 *  Copyright (C) 2009 picoChip Designs, Ltd., James Iles
 *  Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */

#include <linux/atomic.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/irqchip/metag.h>
#include <linux/perf_event.h>
#include <linux/slab.h>

#include <asm/core_reg.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/processor.h>

#include "perf_event.h"

static int _hw_perf_event_init(struct perf_event *);
static void _hw_perf_event_destroy(struct perf_event *);

/* Determines which core type we are */
static struct metag_pmu *metag_pmu __read_mostly;

/* Processor specific data */
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);

/* PMU admin */
const char *perf_pmu_name(void)
{
	if (!metag_pmu)
		return NULL;

	return metag_pmu->name;
}
EXPORT_SYMBOL_GPL(perf_pmu_name);

int perf_num_counters(void)
{
	if (metag_pmu)
		return metag_pmu->max_events;

	return 0;
}
EXPORT_SYMBOL_GPL(perf_num_counters);

static inline int metag_pmu_initialised(void)
{
	return !!metag_pmu;
}

static void release_pmu_hardware(void)
{
	int irq;
	unsigned int version = (metag_pmu->version &
			(METAC_ID_MINOR_BITS | METAC_ID_REV_BITS)) >>
			METAC_ID_REV_S;

	/* Early cores don't have overflow interrupts */
	if (version < 0x0104)
		return;

	irq = internal_irq_map(17);
	if (irq >= 0)
		free_irq(irq, (void *)1);

	irq = internal_irq_map(16);
	if (irq >= 0)
		free_irq(irq, (void *)0);
}

static int reserve_pmu_hardware(void)
{
	int err = 0, irq[2];
	unsigned int version = (metag_pmu->version &
			(METAC_ID_MINOR_BITS | METAC_ID_REV_BITS)) >>
			METAC_ID_REV_S;

	/* Early cores don't have overflow interrupts */
	if (version < 0x0104)
		goto out;

	/*
	 * Bit 16 on HWSTATMETA is the interrupt for performance counter 0;
	 * similarly, 17 is the interrupt for performance counter 1.
	 * We can't (yet) interrupt on the cycle counter, because it's a
	 * register, however it holds a 32-bit value as opposed to 24-bit.
	 */
	irq[0] = internal_irq_map(16);
	if (irq[0] < 0) {
		pr_err("unable to map internal IRQ %d\n", 16);
		goto out;
	}
	err = request_irq(irq[0], metag_pmu->handle_irq, IRQF_NOBALANCING,
			"metagpmu0", (void *)0);
	if (err) {
		pr_err("unable to request IRQ%d for metag PMU counters\n",
				irq[0]);
		goto out;
	}

	irq[1] = internal_irq_map(17);
	if (irq[1] < 0) {
		pr_err("unable to map internal IRQ %d\n", 17);
		goto out_irq1;
	}
	err = request_irq(irq[1], metag_pmu->handle_irq, IRQF_NOBALANCING,
			"metagpmu1", (void *)1);
	if (err) {
		pr_err("unable to request IRQ%d for metag PMU counters\n",
				irq[1]);
		goto out_irq1;
	}

	return 0;

out_irq1:
	free_irq(irq[0], (void *)0);
out:
	return err;
}

/* PMU operations */
static void metag_pmu_enable(struct pmu *pmu)
{
}

static void metag_pmu_disable(struct pmu *pmu)
{
}

static int metag_pmu_event_init(struct perf_event *event)
{
	int err = 0;
	atomic_t *active_events = &metag_pmu->active_events;

	if (!metag_pmu_initialised()) {
		err = -ENODEV;
		goto out;
	}

	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	event->destroy = _hw_perf_event_destroy;

	if (!atomic_inc_not_zero(active_events)) {
		mutex_lock(&metag_pmu->reserve_mutex);
		if (atomic_read(active_events) == 0)
			err = reserve_pmu_hardware();

		if (!err)
			atomic_inc(active_events);

		mutex_unlock(&metag_pmu->reserve_mutex);
	}

	/* Hardware and caches counters */
	switch (event->attr.type) {
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
	case PERF_TYPE_RAW:
		err = _hw_perf_event_init(event);
		break;

	default:
		return -ENOENT;
	}

	if (err)
		event->destroy(event);

out:
	return err;
}

void metag_pmu_event_update(struct perf_event *event,
		struct hw_perf_event *hwc, int idx)
{
	u64 prev_raw_count, new_raw_count;
	s64 delta;

	/*
	 * If this counter is chained, it may be that the previous counter
	 * value has been changed beneath us.
	 *
	 * To get around this, we read and exchange the new raw count, then
	 * add the delta (new - prev) to the generic counter atomically.
	 *
	 * Without interrupts, this is the simplest approach.
	 */
again:
	prev_raw_count = local64_read(&hwc->prev_count);
	new_raw_count = metag_pmu->read(idx);

	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
			new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Calculate the delta and add it to the counter.
	 */
	delta = (new_raw_count - prev_raw_count) & MAX_PERIOD;

	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
}

int metag_pmu_event_set_period(struct perf_event *event,
		struct hw_perf_event *hwc, int idx)
{
	s64 left = local64_read(&hwc->period_left);
	s64 period = hwc->sample_period;
	int ret = 0;

	/* The period may have been changed */
	if (unlikely(period != hwc->last_period))
		left += period - hwc->last_period;

	if (unlikely(left <= -period)) {
		left = period;
		local64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
		local64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (left > (s64)metag_pmu->max_period)
		left = metag_pmu->max_period;

	if (metag_pmu->write) {
		local64_set(&hwc->prev_count, -(s32)left);
		metag_pmu->write(idx, -left & MAX_PERIOD);
	}

	perf_event_update_userpage(event);

	return ret;
}

static void metag_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	if (WARN_ON_ONCE(idx == -1))
		return;

	/*
	 * We always have to reprogram the period, so ignore PERF_EF_RELOAD.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;

	/*
	 * Reset the period.
	 * Some counters can't be stopped (i.e. are core global), so when the
	 * counter was 'stopped' we merely disabled the IRQ. If we don't reset
	 * the period, then we'll either: a) get an overflow too soon;
	 * or b) too late if the overflow happened since disabling.
	 * Obviously, this has little bearing on cores without the overflow
	 * interrupt, as the performance counter resets to zero on write
	 * anyway.
	 */
	if (metag_pmu->max_period)
		metag_pmu_event_set_period(event, hwc, hwc->idx);
	cpuc->events[idx] = event;
	metag_pmu->enable(hwc, idx);
}

static void metag_pmu_stop(struct perf_event *event, int flags)
{
	struct hw_perf_event *hwc = &event->hw;

	/*
	 * We should always update the counter on stop; see comment above
	 * why.
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
		metag_pmu_event_update(event, hwc, hwc->idx);
		metag_pmu->disable(hwc, hwc->idx);
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
}

static int metag_pmu_add(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = 0, ret = 0;

	perf_pmu_disable(event->pmu);

	/* check whether we're counting instructions */
	if (hwc->config == 0x100) {
		if (__test_and_set_bit(METAG_INST_COUNTER,
				cpuc->used_mask)) {
			ret = -EAGAIN;
			goto out;
		}
		idx = METAG_INST_COUNTER;
	} else {
		/* Check whether we have a spare counter */
		idx = find_first_zero_bit(cpuc->used_mask,
				atomic_read(&metag_pmu->active_events));
		if (idx >= METAG_INST_COUNTER) {
			ret = -EAGAIN;
			goto out;
		}

		__set_bit(idx, cpuc->used_mask);
	}
	hwc->idx = idx;

	/* Make sure the counter is disabled */
	metag_pmu->disable(hwc, idx);

	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		metag_pmu_start(event, PERF_EF_RELOAD);

	perf_event_update_userpage(event);
out:
	perf_pmu_enable(event->pmu);
	return ret;
}

static void metag_pmu_del(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	WARN_ON(idx < 0);
	metag_pmu_stop(event, PERF_EF_UPDATE);
	cpuc->events[idx] = NULL;
	__clear_bit(idx, cpuc->used_mask);

	perf_event_update_userpage(event);
}

static void metag_pmu_read(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	/* Don't read disabled counters! */
	if (hwc->idx < 0)
		return;

	metag_pmu_event_update(event, hwc, hwc->idx);
}

static struct pmu pmu = {
	.pmu_enable	= metag_pmu_enable,
	.pmu_disable	= metag_pmu_disable,

	.event_init	= metag_pmu_event_init,

	.add		= metag_pmu_add,
	.del		= metag_pmu_del,
	.start		= metag_pmu_start,
	.stop		= metag_pmu_stop,
	.read		= metag_pmu_read,
};

/* Core counter specific functions */
static const int metag_general_events[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = 0x03,
	[PERF_COUNT_HW_INSTRUCTIONS] = 0x100,
	[PERF_COUNT_HW_CACHE_REFERENCES] = -1,
	[PERF_COUNT_HW_CACHE_MISSES] = -1,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
	[PERF_COUNT_HW_BRANCH_MISSES] = -1,
	[PERF_COUNT_HW_BUS_CYCLES] = -1,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = -1,
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = -1,
	[PERF_COUNT_HW_REF_CPU_CYCLES] = -1,
};

static const int metag_pmu_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = 0x08,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = 0x09,
			[C(RESULT_MISS)] = 0x0a,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = 0xd0,
			[C(RESULT_MISS)] = 0xd2,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = 0xd4,
			[C(RESULT_MISS)] = 0xd5,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = 0xd1,
			[C(RESULT_MISS)] = 0xd3,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
	[C(NODE)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
			[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
		},
	},
};


static void _hw_perf_event_destroy(struct perf_event *event)
{
	atomic_t *active_events = &metag_pmu->active_events;
	struct mutex *pmu_mutex = &metag_pmu->reserve_mutex;

	if (atomic_dec_and_mutex_lock(active_events, pmu_mutex)) {
		release_pmu_hardware();
		mutex_unlock(pmu_mutex);
	}
}

static int _hw_perf_cache_event(int config, int *evp)
{
	unsigned long type, op, result;
	int ev;

	if (!metag_pmu->cache_events)
		return -EINVAL;

	/* Unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
			op >= PERF_COUNT_HW_CACHE_OP_MAX ||
			result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*metag_pmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*evp = ev;
	return 0;
}

static int _hw_perf_event_init(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	int mapping = 0, err;

	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
		if (attr->config >= PERF_COUNT_HW_MAX)
			return -EINVAL;

		mapping = metag_pmu->event_map(attr->config);
		break;

	case PERF_TYPE_HW_CACHE:
		err = _hw_perf_cache_event(attr->config, &mapping);
		if (err)
			return err;
		break;

	case PERF_TYPE_RAW:
		mapping = attr->config;
		break;
	}

	/* Return early if the event is unsupported */
	if (mapping == -1)
		return -EINVAL;

	/*
	 * Early cores have "limited" counters - they have no overflow
	 * interrupts - and so are unable to do sampling without extra work
	 * and timer assistance.
	 */
	if (metag_pmu->max_period == 0) {
		if (hwc->sample_period)
			return -EINVAL;
	}

	/*
	 * Don't assign an index until the event is placed into the hardware.
	 * -1 signifies that we're still deciding where to put it. On SMP
	 * systems each core has its own set of counters, so we can't do any
	 * constraint checking yet.
	 */
	hwc->idx = -1;

	/* Store the event encoding */
	hwc->config |= (unsigned long)mapping;

	/*
	 * For non-sampling runs, limit the sample_period to half of the
	 * counter width. This way, the new counter value should be less
	 * likely to overtake the previous one (unless there are IRQ latency
	 * issues...)
	 */
	if (metag_pmu->max_period) {
		if (!hwc->sample_period) {
			hwc->sample_period = metag_pmu->max_period >> 1;
			hwc->last_period = hwc->sample_period;
			local64_set(&hwc->period_left, hwc->sample_period);
		}
	}

	return 0;
}

static void metag_pmu_enable_counter(struct hw_perf_event *event, int idx)
{
	struct cpu_hw_events *events = &__get_cpu_var(cpu_hw_events);
	unsigned int config = event->config;
	unsigned int tmp = config & 0xf0;
	unsigned long flags;

	raw_spin_lock_irqsave(&events->pmu_lock, flags);

	/*
	 * Check if we're enabling the instruction counter (index of
	 * MAX_HWEVENTS - 1)
	 */
	if (METAG_INST_COUNTER == idx) {
		WARN_ONCE((config != 0x100),
			"invalid configuration (%d) for counter (%d)\n",
			config, idx);
		local64_set(&event->prev_count, __core_reg_get(TXTACTCYC));
		goto unlock;
	}

	/* Check for a core internal or performance channel event. */
	if (tmp) {
		void *perf_addr;

		/*
		 * Anything other than a cycle count will write the low-
		 * nibble to the correct counter register.
		 */
		switch (tmp) {
		case 0xd0:
			perf_addr = (void *)PERF_ICORE(idx);
			break;

		case 0xf0:
			perf_addr = (void *)PERF_CHAN(idx);
			break;

		default:
			perf_addr = NULL;
			break;
		}

		if (perf_addr)
			metag_out32((config & 0x0f), perf_addr);

		/*
		 * Now we use the high nibble as the performance event to
		 * to count.
		 */
		config = tmp >> 4;
	}

	tmp = ((config & 0xf) << 28) |
			((1 << 24) << hard_processor_id());
	if (metag_pmu->max_period)
		/*
		 * Cores supporting overflow interrupts may have had the counter
		 * set to a specific value that needs preserving.
		 */
		tmp |= metag_in32(PERF_COUNT(idx)) & 0x00ffffff;
	else
		/*
		 * Older cores reset the counter on write, so prev_count needs
		 * resetting too so we can calculate a correct delta.
		 */
		local64_set(&event->prev_count, 0);

	metag_out32(tmp, PERF_COUNT(idx));
unlock:
	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}

static void metag_pmu_disable_counter(struct hw_perf_event *event, int idx)
{
	struct cpu_hw_events *events = &__get_cpu_var(cpu_hw_events);
	unsigned int tmp = 0;
	unsigned long flags;

	/*
	 * The cycle counter can't be disabled per se, as it's a hardware
	 * thread register which is always counting. We merely return if this
	 * is the counter we're attempting to disable.
	 */
	if (METAG_INST_COUNTER == idx)
		return;

	/*
	 * The counter value _should_ have been read prior to disabling,
	 * as if we're running on an early core then the value gets reset to
	 * 0, and any read after that would be useless. On the newer cores,
	 * however, it's better to read-modify-update this for purposes of
	 * the overflow interrupt.
	 * Here we remove the thread id AND the event nibble (there are at
	 * least two events that count events that are core global and ignore
	 * the thread id mask). This only works because we don't mix thread
	 * performance counts, and event 0x00 requires a thread id mask!
	 */
	raw_spin_lock_irqsave(&events->pmu_lock, flags);

	tmp = metag_in32(PERF_COUNT(idx));
	tmp &= 0x00ffffff;
	metag_out32(tmp, PERF_COUNT(idx));

	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}

static u64 metag_pmu_read_counter(int idx)
{
	u32 tmp = 0;

	if (METAG_INST_COUNTER == idx) {
		tmp = __core_reg_get(TXTACTCYC);
		goto out;
	}

	tmp = metag_in32(PERF_COUNT(idx)) & 0x00ffffff;
out:
	return tmp;
}

static void metag_pmu_write_counter(int idx, u32 val)
{
	struct cpu_hw_events *events = &__get_cpu_var(cpu_hw_events);
	u32 tmp = 0;
	unsigned long flags;

	/*
	 * This _shouldn't_ happen, but if it does, then we can just
	 * ignore the write, as the register is read-only and clear-on-write.
	 */
	if (METAG_INST_COUNTER == idx)
		return;

	/*
	 * We'll keep the thread mask and event id, and just update the
	 * counter itself. Also , we should bound the value to 24-bits.
	 */
	raw_spin_lock_irqsave(&events->pmu_lock, flags);

	val &= 0x00ffffff;
	tmp = metag_in32(PERF_COUNT(idx)) & 0xff000000;
	val |= tmp;
	metag_out32(val, PERF_COUNT(idx));

	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}

static int metag_pmu_event_map(int idx)
{
	return metag_general_events[idx];
}

static irqreturn_t metag_pmu_counter_overflow(int irq, void *dev)
{
	int idx = (int)dev;
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event = cpuhw->events[idx];
	struct hw_perf_event *hwc = &event->hw;
	struct pt_regs *regs = get_irq_regs();
	struct perf_sample_data sampledata;
	unsigned long flags;
	u32 counter = 0;

	/*
	 * We need to stop the core temporarily from generating another
	 * interrupt while we disable this counter. However, we don't want
	 * to flag the counter as free
	 */
	__global_lock2(flags);
	counter = metag_in32(PERF_COUNT(idx));
	metag_out32((counter & 0x00ffffff), PERF_COUNT(idx));
	__global_unlock2(flags);

	/* Update the counts and reset the sample period */
	metag_pmu_event_update(event, hwc, idx);
	perf_sample_data_init(&sampledata, 0, hwc->last_period);
	metag_pmu_event_set_period(event, hwc, idx);

	/*
	 * Enable the counter again once core overflow processing has
	 * completed. Note the counter value may have been modified while it was
	 * inactive to set it up ready for the next interrupt.
	 */
	if (!perf_event_overflow(event, &sampledata, regs)) {
		__global_lock2(flags);
		counter = (counter & 0xff000000) |
			  (metag_in32(PERF_COUNT(idx)) & 0x00ffffff);
		metag_out32(counter, PERF_COUNT(idx));
		__global_unlock2(flags);
	}

	return IRQ_HANDLED;
}

static struct metag_pmu _metag_pmu = {
	.handle_irq	= metag_pmu_counter_overflow,
	.enable		= metag_pmu_enable_counter,
	.disable	= metag_pmu_disable_counter,
	.read		= metag_pmu_read_counter,
	.write		= metag_pmu_write_counter,
	.event_map	= metag_pmu_event_map,
	.cache_events	= &metag_pmu_cache_events,
	.max_period	= MAX_PERIOD,
	.max_events	= MAX_HWEVENTS,
};

/* PMU CPU hotplug notifier */
static int __cpuinit metag_pmu_cpu_notify(struct notifier_block *b,
		unsigned long action, void *hcpu)
{
	unsigned int cpu = (unsigned int)hcpu;
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
		return NOTIFY_DONE;

	memset(cpuc, 0, sizeof(struct cpu_hw_events));
	raw_spin_lock_init(&cpuc->pmu_lock);

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata metag_pmu_notifier = {
	.notifier_call = metag_pmu_cpu_notify,
};

/* PMU Initialisation */
static int __init init_hw_perf_events(void)
{
	int ret = 0, cpu;
	u32 version = *(u32 *)METAC_ID;
	int major = (version & METAC_ID_MAJOR_BITS) >> METAC_ID_MAJOR_S;
	int min_rev = (version & (METAC_ID_MINOR_BITS | METAC_ID_REV_BITS))
			>> METAC_ID_REV_S;

	/* Not a Meta 2 core, then not supported */
	if (0x02 > major) {
		pr_info("no hardware counter support available\n");
		goto out;
	} else if (0x02 == major) {
		metag_pmu = &_metag_pmu;

		if (min_rev < 0x0104) {
			/*
			 * A core without overflow interrupts, and clear-on-
			 * write counters.
			 */
			metag_pmu->handle_irq = NULL;
			metag_pmu->write = NULL;
			metag_pmu->max_period = 0;
		}

		metag_pmu->name = "meta2";
		metag_pmu->version = version;
		metag_pmu->pmu = pmu;
	}

	pr_info("enabled with %s PMU driver, %d counters available\n",
			metag_pmu->name, metag_pmu->max_events);

	/* Initialise the active events and reservation mutex */
	atomic_set(&metag_pmu->active_events, 0);
	mutex_init(&metag_pmu->reserve_mutex);

	/* Clear the counters */
	metag_out32(0, PERF_COUNT(0));
	metag_out32(0, PERF_COUNT(1));

	for_each_possible_cpu(cpu) {
		struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

		memset(cpuc, 0, sizeof(struct cpu_hw_events));
		raw_spin_lock_init(&cpuc->pmu_lock);
	}

	register_cpu_notifier(&metag_pmu_notifier);
	ret = perf_pmu_register(&pmu, (char *)metag_pmu->name, PERF_TYPE_RAW);
out:
	return ret;
}
early_initcall(init_hw_perf_events);