Free Electrons

Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>

#include "ipath_kernel.h"

/*
 * InfiniPath I2C driver for a serial eeprom.  This is not a generic
 * I2C interface.  For a start, the device we're using (Atmel AT24C11)
 * doesn't work like a regular I2C device.  It looks like one
 * electrically, but not logically.  Normal I2C devices have a single
 * 7-bit or 10-bit I2C address that they respond to.  Valid 7-bit
 * addresses range from 0x03 to 0x77.  Addresses 0x00 to 0x02 and 0x78
 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
 * call" address.)  The Atmel device, on the other hand, responds to ALL
 * 7-bit addresses.  It's designed to be the only device on a given I2C
 * bus.  A 7-bit address corresponds to the memory address within the
 * Atmel device itself.
 *
 * Also, the timing requirements mean more than simple software
 * bitbanging, with readbacks from chip to ensure timing (simple udelay
 * is not enough).
 *
 * This all means that accessing the device is specialized enough
 * that using the standard kernel I2C bitbanging interface would be
 * impossible.  For example, the core I2C eeprom driver expects to find
 * a device at one or more of a limited set of addresses only.  It doesn't
 * allow writing to an eeprom.  It also doesn't provide any means of
 * accessing eeprom contents from within the kernel, only via sysfs.
 */

/* Added functionality for IBA7220-based cards */
#define IPATH_EEPROM_DEV_V1 0xA0
#define IPATH_EEPROM_DEV_V2 0xA2
#define IPATH_TEMP_DEV 0x98
#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
#define IPATH_NO_DEV (0xFF)

/*
 * The number of I2C chains is proliferating. Table below brings
 * some order to the madness. The basic principle is that the
 * table is scanned from the top, and a "probe" is made to the
 * device probe_dev. If that succeeds, the chain is considered
 * to be of that type, and dd->i2c_chain_type is set to the index+1
 * of the entry.
 * The +1 is so static initialization can mean "unknown, do probe."
 */
static struct i2c_chain_desc {
	u8 probe_dev;	/* If seen at probe, chain is this type */
	u8 eeprom_dev;	/* Dev addr (if any) for EEPROM */
	u8 temp_dev;	/* Dev Addr (if any) for Temp-sense */
} i2c_chains[] = {
	{ IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
	{ IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
	{ IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
	{ IPATH_NO_DEV }
};

enum i2c_type {
	i2c_line_scl = 0,
	i2c_line_sda
};

enum i2c_state {
	i2c_line_low = 0,
	i2c_line_high
};

#define READ_CMD 1
#define WRITE_CMD 0

/**
 * i2c_gpio_set - set a GPIO line
 * @dd: the infinipath device
 * @line: the line to set
 * @new_line_state: the state to set
 *
 * Returns 0 if the line was set to the new state successfully, non-zero
 * on error.
 */
static int i2c_gpio_set(struct ipath_devdata *dd,
			enum i2c_type line,
			enum i2c_state new_line_state)
{
	u64 out_mask, dir_mask, *gpioval;
	unsigned long flags = 0;

	gpioval = &dd->ipath_gpio_out;

	if (line == i2c_line_scl) {
		dir_mask = dd->ipath_gpio_scl;
		out_mask = (1UL << dd->ipath_gpio_scl_num);
	} else {
		dir_mask = dd->ipath_gpio_sda;
		out_mask = (1UL << dd->ipath_gpio_sda_num);
	}

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	if (new_line_state == i2c_line_high) {
		/* tri-state the output rather than force high */
		dd->ipath_extctrl &= ~dir_mask;
	} else {
		/* config line to be an output */
		dd->ipath_extctrl |= dir_mask;
	}
	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);

	/* set output as well (no real verify) */
	if (new_line_state == i2c_line_high)
		*gpioval |= out_mask;
	else
		*gpioval &= ~out_mask;

	ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	return 0;
}

/**
 * i2c_gpio_get - get a GPIO line state
 * @dd: the infinipath device
 * @line: the line to get
 * @curr_statep: where to put the line state
 *
 * Returns 0 if the line was set to the new state successfully, non-zero
 * on error.  curr_state is not set on error.
 */
static int i2c_gpio_get(struct ipath_devdata *dd,
			enum i2c_type line,
			enum i2c_state *curr_statep)
{
	u64 read_val, mask;
	int ret;
	unsigned long flags = 0;

	/* check args */
	if (curr_statep == NULL) {
		ret = 1;
		goto bail;
	}

	/* config line to be an input */
	if (line == i2c_line_scl)
		mask = dd->ipath_gpio_scl;
	else
		mask = dd->ipath_gpio_sda;

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	dd->ipath_extctrl &= ~mask;
	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
	/*
	 * Below is very unlikely to reflect true input state if Output
	 * Enable actually changed.
	 */
	read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	if (read_val & mask)
		*curr_statep = i2c_line_high;
	else
		*curr_statep = i2c_line_low;

	ret = 0;

bail:
	return ret;
}

/**
 * i2c_wait_for_writes - wait for a write
 * @dd: the infinipath device
 *
 * We use this instead of udelay directly, so we can make sure
 * that previous register writes have been flushed all the way
 * to the chip.  Since we are delaying anyway, the cost doesn't
 * hurt, and makes the bit twiddling more regular
 */
static void i2c_wait_for_writes(struct ipath_devdata *dd)
{
	(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
	rmb();
}

static void scl_out(struct ipath_devdata *dd, u8 bit)
{
	udelay(1);
	i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);

	i2c_wait_for_writes(dd);
}

static void sda_out(struct ipath_devdata *dd, u8 bit)
{
	i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);

	i2c_wait_for_writes(dd);
}

static u8 sda_in(struct ipath_devdata *dd, int wait)
{
	enum i2c_state bit;

	if (i2c_gpio_get(dd, i2c_line_sda, &bit))
		ipath_dbg("get bit failed!\n");

	if (wait)
		i2c_wait_for_writes(dd);

	return bit == i2c_line_high ? 1U : 0;
}

/**
 * i2c_ackrcv - see if ack following write is true
 * @dd: the infinipath device
 */
static int i2c_ackrcv(struct ipath_devdata *dd)
{
	u8 ack_received;

	/* AT ENTRY SCL = LOW */
	/* change direction, ignore data */
	ack_received = sda_in(dd, 1);
	scl_out(dd, i2c_line_high);
	ack_received = sda_in(dd, 1) == 0;
	scl_out(dd, i2c_line_low);
	return ack_received;
}

/**
 * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
 * @dd: the infinipath device
 *
 * Returns byte shifted out of device
 */
static int rd_byte(struct ipath_devdata *dd)
{
	int bit_cntr, data;

	data = 0;

	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
		data <<= 1;
		scl_out(dd, i2c_line_high);
		data |= sda_in(dd, 0);
		scl_out(dd, i2c_line_low);
	}
	return data;
}

/**
 * wr_byte - write a byte, one bit at a time
 * @dd: the infinipath device
 * @data: the byte to write
 *
 * Returns 0 if we got the following ack, otherwise 1
 */
static int wr_byte(struct ipath_devdata *dd, u8 data)
{
	int bit_cntr;
	u8 bit;

	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
		bit = (data >> bit_cntr) & 1;
		sda_out(dd, bit);
		scl_out(dd, i2c_line_high);
		scl_out(dd, i2c_line_low);
	}
	return (!i2c_ackrcv(dd)) ? 1 : 0;
}

static void send_ack(struct ipath_devdata *dd)
{
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_high);
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_high);
}

/**
 * i2c_startcmd - transmit the start condition, followed by address/cmd
 * @dd: the infinipath device
 * @offset_dir: direction byte
 *
 *      (both clock/data high, clock high, data low while clock is high)
 */
static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
{
	int res;

	/* issue start sequence */
	sda_out(dd, i2c_line_high);
	scl_out(dd, i2c_line_high);
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_low);

	/* issue length and direction byte */
	res = wr_byte(dd, offset_dir);

	if (res)
		ipath_cdbg(VERBOSE, "No ack to complete start\n");

	return res;
}

/**
 * stop_cmd - transmit the stop condition
 * @dd: the infinipath device
 *
 * (both clock/data low, clock high, data high while clock is high)
 */
static void stop_cmd(struct ipath_devdata *dd)
{
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_high);
	sda_out(dd, i2c_line_high);
	udelay(2);
}

/**
 * eeprom_reset - reset I2C communication
 * @dd: the infinipath device
 */

static int eeprom_reset(struct ipath_devdata *dd)
{
	int clock_cycles_left = 9;
	u64 *gpioval = &dd->ipath_gpio_out;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	/* Make sure shadows are consistent */
	dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
	*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
		   "is %llx\n", (unsigned long long) *gpioval);

	/*
	 * This is to get the i2c into a known state, by first going low,
	 * then tristate sda (and then tristate scl as first thing
	 * in loop)
	 */
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_high);

	/* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
	while (clock_cycles_left--) {
		scl_out(dd, i2c_line_high);

		/* SDA seen high, issue START by dropping it while SCL high */
		if (sda_in(dd, 0)) {
			sda_out(dd, i2c_line_low);
			scl_out(dd, i2c_line_low);
			/* ATMEL spec says must be followed by STOP. */
			scl_out(dd, i2c_line_high);
			sda_out(dd, i2c_line_high);
			ret = 0;
			goto bail;
		}

		scl_out(dd, i2c_line_low);
	}

	ret = 1;

bail:
	return ret;
}

/*
 * Probe for I2C device at specified address. Returns 0 for "success"
 * to match rest of this file.
 * Leave bus in "reasonable" state for further commands.
 */
static int i2c_probe(struct ipath_devdata *dd, int devaddr)
{
	int ret = 0;

	ret = eeprom_reset(dd);
	if (ret) {
		ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
			      devaddr);
		return ret;
	}
	/*
	 * Reset no longer leaves bus in start condition, so normal
	 * i2c_startcmd() will do.
	 */
	ret = i2c_startcmd(dd, devaddr | READ_CMD);
	if (ret)
		ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
			   devaddr);
	else {
		/*
		 * Device did respond. Complete a single-byte read, because some
		 * devices apparently cannot handle STOP immediately after they
		 * ACK the start-cmd.
		 */
		int data;
		data = rd_byte(dd);
		stop_cmd(dd);
		ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
	}
	return ret;
}

/*
 * Returns the "i2c type". This is a pointer to a struct that describes
 * the I2C chain on this board. To minimize impact on struct ipath_devdata,
 * the (small integer) index into the table is actually memoized, rather
 * then the pointer.
 * Memoization is because the type is determined on the first call per chip.
 * An alternative would be to move type determination to early
 * init code.
 */
static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
{
	int idx;

	/* Get memoized index, from previous successful probes */
	idx = dd->ipath_i2c_chain_type - 1;
	if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
		goto done;

	idx = 0;
	while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
		/* if probe succeeds, this is type */
		if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
			break;
		++idx;
	}

	/*
	 * Old EEPROM (first entry) may require a reset after probe,
	 * rather than being able to "start" after "stop"
	 */
	if (idx == 0)
		eeprom_reset(dd);

	if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
		idx = -1;
	else
		dd->ipath_i2c_chain_type = idx + 1;
done:
	return (idx >= 0) ? i2c_chains + idx : NULL;
}

static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
					u8 eeprom_offset, void *buffer, int len)
{
	int ret;
	struct i2c_chain_desc *icd;
	u8 *bp = buffer;

	ret = 1;
	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->eeprom_dev == IPATH_NO_DEV) {
		/* legacy not-really-I2C */
		ipath_cdbg(VERBOSE, "Start command only address\n");
		eeprom_offset = (eeprom_offset << 1) | READ_CMD;
		ret = i2c_startcmd(dd, eeprom_offset);
	} else {
		/* Actual I2C */
		ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
		if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
			ipath_dbg("Failed EEPROM startcmd\n");
			stop_cmd(dd);
			ret = 1;
			goto bail;
		}
		ret = wr_byte(dd, eeprom_offset);
		stop_cmd(dd);
		if (ret) {
			ipath_dev_err(dd, "Failed to write EEPROM address\n");
			ret = 1;
			goto bail;
		}
		ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
	}
	if (ret) {
		ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
		stop_cmd(dd);
		ret = 1;
		goto bail;
	}

	/*
	 * eeprom keeps clocking data out as long as we ack, automatically
	 * incrementing the address.
	 */
	while (len-- > 0) {
		/* get and store data */
		*bp++ = rd_byte(dd);
		/* send ack if not the last byte */
		if (len)
			send_ack(dd);
	}

	stop_cmd(dd);

	ret = 0;

bail:
	return ret;
}

static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
				       const void *buffer, int len)
{
	int sub_len;
	const u8 *bp = buffer;
	int max_wait_time, i;
	int ret;
	struct i2c_chain_desc *icd;

	ret = 1;
	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	while (len > 0) {
		if (icd->eeprom_dev == IPATH_NO_DEV) {
			if (i2c_startcmd(dd,
					 (eeprom_offset << 1) | WRITE_CMD)) {
				ipath_dbg("Failed to start cmd offset %u\n",
					eeprom_offset);
				goto failed_write;
			}
		} else {
			/* Real I2C */
			if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
				ipath_dbg("Failed EEPROM startcmd\n");
				goto failed_write;
			}
			ret = wr_byte(dd, eeprom_offset);
			if (ret) {
				ipath_dev_err(dd, "Failed to write EEPROM "
					      "address\n");
				goto failed_write;
			}
		}

		sub_len = min(len, 4);
		eeprom_offset += sub_len;
		len -= sub_len;

		for (i = 0; i < sub_len; i++) {
			if (wr_byte(dd, *bp++)) {
				ipath_dbg("no ack after byte %u/%u (%u "
					  "total remain)\n", i, sub_len,
					  len + sub_len - i);
				goto failed_write;
			}
		}

		stop_cmd(dd);

		/*
		 * wait for write complete by waiting for a successful
		 * read (the chip replies with a zero after the write
		 * cmd completes, and before it writes to the eeprom.
		 * The startcmd for the read will fail the ack until
		 * the writes have completed.   We do this inline to avoid
		 * the debug prints that are in the real read routine
		 * if the startcmd fails.
		 * We also use the proper device address, so it doesn't matter
		 * whether we have real eeprom_dev. legacy likes any address.
		 */
		max_wait_time = 100;
		while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
			stop_cmd(dd);
			if (!--max_wait_time) {
				ipath_dbg("Did not get successful read to "
					  "complete write\n");
				goto failed_write;
			}
		}
		/* now read (and ignore) the resulting byte */
		rd_byte(dd);
		stop_cmd(dd);
	}

	ret = 0;
	goto bail;

failed_write:
	stop_cmd(dd);
	ret = 1;

bail:
	return ret;
}

/**
 * ipath_eeprom_read - receives bytes from the eeprom via I2C
 * @dd: the infinipath device
 * @eeprom_offset: address to read from
 * @buffer: where to store result
 * @len: number of bytes to receive
 */
int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
			void *buff, int len)
{
	int ret;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	return ret;
}

/**
 * ipath_eeprom_write - writes data to the eeprom via I2C
 * @dd: the infinipath device
 * @eeprom_offset: where to place data
 * @buffer: data to write
 * @len: number of bytes to write
 */
int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
			const void *buff, int len)
{
	int ret;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	return ret;
}

static u8 flash_csum(struct ipath_flash *ifp, int adjust)
{
	u8 *ip = (u8 *) ifp;
	u8 csum = 0, len;

	/*
	 * Limit length checksummed to max length of actual data.
	 * Checksum of erased eeprom will still be bad, but we avoid
	 * reading past the end of the buffer we were passed.
	 */
	len = ifp->if_length;
	if (len > sizeof(struct ipath_flash))
		len = sizeof(struct ipath_flash);
	while (len--)
		csum += *ip++;
	csum -= ifp->if_csum;
	csum = ~csum;
	if (adjust)
		ifp->if_csum = csum;

	return csum;
}

/**
 * ipath_get_guid - get the GUID from the i2c device
 * @dd: the infinipath device
 *
 * We have the capability to use the ipath_nguid field, and get
 * the guid from the first chip's flash, to use for all of them.
 */
void ipath_get_eeprom_info(struct ipath_devdata *dd)
{
	void *buf;
	struct ipath_flash *ifp;
	__be64 guid;
	int len, eep_stat;
	u8 csum, *bguid;
	int t = dd->ipath_unit;
	struct ipath_devdata *dd0 = ipath_lookup(0);

	if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
		u8 oguid;
		dd->ipath_guid = dd0->ipath_guid;
		bguid = (u8 *) & dd->ipath_guid;

		oguid = bguid[7];
		bguid[7] += t;
		if (oguid > bguid[7]) {
			if (bguid[6] == 0xff) {
				if (bguid[5] == 0xff) {
					ipath_dev_err(
						dd,
						"Can't set %s GUID from "
						"base, wraps to OUI!\n",
						ipath_get_unit_name(t));
					dd->ipath_guid = 0;
					goto bail;
				}
				bguid[5]++;
			}
			bguid[6]++;
		}
		dd->ipath_nguid = 1;

		ipath_dbg("nguid %u, so adding %u to device 0 guid, "
			  "for %llx\n",
			  dd0->ipath_nguid, t,
			  (unsigned long long) be64_to_cpu(dd->ipath_guid));
		goto bail;
	}

	/*
	 * read full flash, not just currently used part, since it may have
	 * been written with a newer definition
	 * */
	len = sizeof(struct ipath_flash);
	buf = vmalloc(len);
	if (!buf) {
		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
			      "bytes from eeprom for GUID\n", len);
		goto bail;
	}

	mutex_lock(&dd->ipath_eep_lock);
	eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
	mutex_unlock(&dd->ipath_eep_lock);

	if (eep_stat) {
		ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
		goto done;
	}
	ifp = (struct ipath_flash *)buf;

	csum = flash_csum(ifp, 0);
	if (csum != ifp->if_csum) {
		dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
			 "0x%x, not 0x%x\n", csum, ifp->if_csum);
		goto done;
	}
	if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
	    *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
		ipath_dev_err(dd, "Invalid GUID %llx from flash; "
			      "ignoring\n",
			      *(unsigned long long *) ifp->if_guid);
		/* don't allow GUID if all 0 or all 1's */
		goto done;
	}

	/* complain, but allow it */
	if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
		dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
			 "default, probably not correct!\n",
			 *(unsigned long long *) ifp->if_guid);

	bguid = ifp->if_guid;
	if (!bguid[0] && !bguid[1] && !bguid[2]) {
		/* original incorrect GUID format in flash; fix in
		 * core copy, by shifting up 2 octets; don't need to
		 * change top octet, since both it and shifted are
		 * 0.. */
		bguid[1] = bguid[3];
		bguid[2] = bguid[4];
		bguid[3] = bguid[4] = 0;
		guid = *(__be64 *) ifp->if_guid;
		ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
			   "shifting 2 octets\n");
	} else
		guid = *(__be64 *) ifp->if_guid;
	dd->ipath_guid = guid;
	dd->ipath_nguid = ifp->if_numguid;
	/*
	 * Things are slightly complicated by the desire to transparently
	 * support both the Pathscale 10-digit serial number and the QLogic
	 * 13-character version.
	 */
	if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
		&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
		/* This board has a Serial-prefix, which is stored
		 * elsewhere for backward-compatibility.
		 */
		char *snp = dd->ipath_serial;
		memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
		snp[sizeof ifp->if_sprefix] = '\0';
		len = strlen(snp);
		snp += len;
		len = (sizeof dd->ipath_serial) - len;
		if (len > sizeof ifp->if_serial) {
			len = sizeof ifp->if_serial;
		}
		memcpy(snp, ifp->if_serial, len);
	} else
		memcpy(dd->ipath_serial, ifp->if_serial,
		       sizeof ifp->if_serial);
	if (!strstr(ifp->if_comment, "Tested successfully"))
		ipath_dev_err(dd, "Board SN %s did not pass functional "
			"test: %s\n", dd->ipath_serial,
			ifp->if_comment);

	ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
		   (unsigned long long) be64_to_cpu(dd->ipath_guid));

	memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
	/*
	 * Power-on (actually "active") hours are kept as little-endian value
	 * in EEPROM, but as seconds in a (possibly as small as 24-bit)
	 * atomic_t while running.
	 */
	atomic_set(&dd->ipath_active_time, 0);
	dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);

done:
	vfree(buf);

bail:;
}

/**
 * ipath_update_eeprom_log - copy active-time and error counters to eeprom
 * @dd: the infinipath device
 *
 * Although the time is kept as seconds in the ipath_devdata struct, it is
 * rounded to hours for re-write, as we have only 16 bits in EEPROM.
 * First-cut code reads whole (expected) struct ipath_flash, modifies,
 * re-writes. Future direction: read/write only what we need, assuming
 * that the EEPROM had to have been "good enough" for driver init, and
 * if not, we aren't making it worse.
 *
 */

int ipath_update_eeprom_log(struct ipath_devdata *dd)
{
	void *buf;
	struct ipath_flash *ifp;
	int len, hi_water;
	uint32_t new_time, new_hrs;
	u8 csum;
	int ret, idx;
	unsigned long flags;

	/* first, check if we actually need to do anything. */
	ret = 0;
	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
		if (dd->ipath_eep_st_new_errs[idx]) {
			ret = 1;
			break;
		}
	}
	new_time = atomic_read(&dd->ipath_active_time);

	if (ret == 0 && new_time < 3600)
		return 0;

	/*
	 * The quick-check above determined that there is something worthy
	 * of logging, so get current contents and do a more detailed idea.
	 * read full flash, not just currently used part, since it may have
	 * been written with a newer definition
	 */
	len = sizeof(struct ipath_flash);
	buf = vmalloc(len);
	ret = 1;
	if (!buf) {
		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
				"bytes from eeprom for logging\n", len);
		goto bail;
	}

	/* Grab semaphore and read current EEPROM. If we get an
	 * error, let go, but if not, keep it until we finish write.
	 */
	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (ret) {
		ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
		goto free_bail;
	}
	ret = ipath_eeprom_internal_read(dd, 0, buf, len);
	if (ret) {
		mutex_unlock(&dd->ipath_eep_lock);
		ipath_dev_err(dd, "Unable read EEPROM for logging\n");
		goto free_bail;
	}
	ifp = (struct ipath_flash *)buf;

	csum = flash_csum(ifp, 0);
	if (csum != ifp->if_csum) {
		mutex_unlock(&dd->ipath_eep_lock);
		ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
				csum, ifp->if_csum);
		ret = 1;
		goto free_bail;
	}
	hi_water = 0;
	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
		int new_val = dd->ipath_eep_st_new_errs[idx];
		if (new_val) {
			/*
			 * If we have seen any errors, add to EEPROM values
			 * We need to saturate at 0xFF (255) and we also
			 * would need to adjust the checksum if we were
			 * trying to minimize EEPROM traffic
			 * Note that we add to actual current count in EEPROM,
			 * in case it was altered while we were running.
			 */
			new_val += ifp->if_errcntp[idx];
			if (new_val > 0xFF)
				new_val = 0xFF;
			if (ifp->if_errcntp[idx] != new_val) {
				ifp->if_errcntp[idx] = new_val;
				hi_water = offsetof(struct ipath_flash,
						if_errcntp) + idx;
			}
			/*
			 * update our shadow (used to minimize EEPROM
			 * traffic), to match what we are about to write.
			 */
			dd->ipath_eep_st_errs[idx] = new_val;
			dd->ipath_eep_st_new_errs[idx] = 0;
		}
	}
	/*
	 * now update active-time. We would like to round to the nearest hour
	 * but unless atomic_t are sure to be proper signed ints we cannot,
	 * because we need to account for what we "transfer" to EEPROM and
	 * if we log an hour at 31 minutes, then we would need to set
	 * active_time to -29 to accurately count the _next_ hour.
	 */
	if (new_time >= 3600) {
		new_hrs = new_time / 3600;
		atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
		new_hrs += dd->ipath_eep_hrs;
		if (new_hrs > 0xFFFF)
			new_hrs = 0xFFFF;
		dd->ipath_eep_hrs = new_hrs;
		if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
			ifp->if_powerhour[0] = new_hrs & 0xFF;
			hi_water = offsetof(struct ipath_flash, if_powerhour);
		}
		if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
			ifp->if_powerhour[1] = new_hrs >> 8;
			hi_water = offsetof(struct ipath_flash, if_powerhour)
					+ 1;
		}
	}
	/*
	 * There is a tiny possibility that we could somehow fail to write
	 * the EEPROM after updating our shadows, but problems from holding
	 * the spinlock too long are a much bigger issue.
	 */
	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
	if (hi_water) {
		/* we made some change to the data, uopdate cksum and write */
		csum = flash_csum(ifp, 1);
		ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
	}
	mutex_unlock(&dd->ipath_eep_lock);
	if (ret)
		ipath_dev_err(dd, "Failed updating EEPROM\n");

free_bail:
	vfree(buf);
bail:
	return ret;

}

/**
 * ipath_inc_eeprom_err - increment one of the four error counters
 * that are logged to EEPROM.
 * @dd: the infinipath device
 * @eidx: 0..3, the counter to increment
 * @incr: how much to add
 *
 * Each counter is 8-bits, and saturates at 255 (0xFF). They
 * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
 * is called, but it can only be called in a context that allows sleep.
 * This function can be called even at interrupt level.
 */

void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
{
	uint new_val;
	unsigned long flags;

	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
	new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
	if (new_val > 255)
		new_val = 255;
	dd->ipath_eep_st_new_errs[eidx] = new_val;
	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
	return;
}

static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
{
	int ret;
	struct i2c_chain_desc *icd;

	ret = -ENOENT;

	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->temp_dev == IPATH_NO_DEV) {
		/* tempsense only exists on new, real-I2C boards */
		ret = -ENXIO;
		goto bail;
	}

	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
		ipath_dbg("Failed tempsense startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, regnum);
	stop_cmd(dd);
	if (ret) {
		ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
			      regnum);
		ret = -ENXIO;
		goto bail;
	}
	if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
		ipath_dbg("Failed tempsense RD startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	/*
	 * We can only clock out one byte per command, sensibly
	 */
	ret = rd_byte(dd);
	stop_cmd(dd);

bail:
	return ret;
}

#define VALID_TS_RD_REG_MASK 0xBF

/**
 * ipath_tempsense_read - read register of temp sensor via I2C
 * @dd: the infinipath device
 * @regnum: register to read from
 *
 * returns reg contents (0..255) or < 0 for error
 */
int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
{
	int ret;

	if (regnum > 7)
		return -EINVAL;

	/* return a bogus value for (the one) register we do not have */
	if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
		return 0;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_tempsense_internal_read(dd, regnum);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	/*
	 * There are three possibilities here:
	 * ret is actual value (0..255)
	 * ret is -ENXIO or -EINVAL from code in this file
	 * ret is -EINTR from mutex_lock_interruptible.
	 */
	return ret;
}

static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
					  u8 regnum, u8 data)
{
	int ret = -ENOENT;
	struct i2c_chain_desc *icd;

	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->temp_dev == IPATH_NO_DEV) {
		/* tempsense only exists on new, real-I2C boards */
		ret = -ENXIO;
		goto bail;
	}
	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
		ipath_dbg("Failed tempsense startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, regnum);
	if (ret) {
		stop_cmd(dd);
		ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
			      regnum);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, data);
	stop_cmd(dd);
	ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
	if (ret) {
		ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
			      regnum);
		ret = -ENXIO;
	}

bail:
	return ret;
}

#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))

/**
 * ipath_tempsense_write - write register of temp sensor via I2C
 * @dd: the infinipath device
 * @regnum: register to write
 * @data: data to write
 *
 * returns 0 for success or < 0 for error
 */
int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
{
	int ret;

	if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
		return -EINVAL;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_tempsense_internal_write(dd, regnum, data);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	/*
	 * There are three possibilities here:
	 * ret is 0 for success
	 * ret is -ENXIO or -EINVAL from code in this file
	 * ret is -EINTR from mutex_lock_interruptible.
	 */
	return ret;
}