Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include "dsa_priv.h"
#include "mv88e6xxx.h"

/*
 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
		ret = mdiobus_read(bus, sw_addr, 0);
		if (ret < 0)
			return ret;

		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

	/*
	 * Wait for the bus to become free.
	 */
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	/*
	 * Transmit the read command.
	 */
	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

	/*
	 * Wait for the read command to complete.
	 */
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	/*
	 * Read the data.
	 */
	ret = mdiobus_read(bus, sw_addr, 1);
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
				   ds->pd->sw_addr, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

	/*
	 * Wait for the bus to become free.
	 */
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	/*
	 * Transmit the data to write.
	 */
	ret = mdiobus_write(bus, sw_addr, 1, val);
	if (ret < 0)
		return ret;

	/*
	 * Transmit the write command.
	 */
	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

	/*
	 * Wait for the write command to complete.
	 */
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
				    ds->pd->sw_addr, addr, reg, val);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
	/*
	 * Configure the IP ToS mapping registers.
	 */
	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

	/*
	 * Configure the IEEE 802.1p priority mapping register.
	 */
	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

	return 0;
}

int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

	return 0;
}

int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

		/*
		 * Write the MAC address byte.
		 */
		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

		/*
		 * Wait for the write to complete.
		 */
		for (j = 0; j < 16; j++) {
			ret = REG_READ(REG_GLOBAL2, 0x0d);
			if ((ret & 0x8000) == 0)
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
	int i;

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

	for (i = 0; i < 1000; i++) {
	        ret = REG_READ(REG_GLOBAL, 0x00);
	        msleep(1);
	        if ((ret & 0xc000) != 0xc000)
	                return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
	int i;

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

	for (i = 0; i < 1000; i++) {
	        ret = REG_READ(REG_GLOBAL, 0x00);
	        msleep(1);
	        if ((ret & 0xc000) == 0xc000)
	                return 0;
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
	        struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;

	        if (mv88e6xxx_ppu_enable(ds) == 0)
	                ps->ppu_disabled = 0;
	        mutex_unlock(&ps->ppu_mutex);
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
	int ret;

	mutex_lock(&ps->ppu_mutex);

	/*
	 * If the PHY polling unit is enabled, disable it so that
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
	        ret = mv88e6xxx_ppu_disable(ds);
	        if (ret < 0) {
	                mutex_unlock(&ps->ppu_mutex);
	                return ret;
	        }
	        ps->ppu_disabled = 1;
	} else {
	        del_timer(&ps->ppu_timer);
	        ret = 0;
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);

	/*
	 * Schedule a timer to re-enable the PHY polling unit.
	 */
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
	        ret = mv88e6xxx_reg_read(ds, addr, regnum);
	        mv88e6xxx_ppu_access_put(ds);
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
	        ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
	        mv88e6xxx_ppu_access_put(ds);
	}

	return ret;
}
#endif

void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
		int uninitialized_var(port_status);
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
			if (port_status < 0)
				continue;

			link = !!(port_status & 0x0800);
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
				printk(KERN_INFO "%s: link down\n", dev->name);
				netif_carrier_off(dev);
			}
			continue;
		}

		switch (port_status & 0x0300) {
		case 0x0000:
			speed = 10;
			break;
		case 0x0100:
			speed = 100;
			break;
		case 0x0200:
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
		duplex = (port_status & 0x0400) ? 1 : 0;
		fc = (port_status & 0x8000) ? 1 : 0;

		if (!netif_carrier_ok(dev)) {
			printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
					 "flow control %sabled\n", dev->name,
					 speed, duplex ? "full" : "half",
					 fc ? "en" : "dis");
			netif_carrier_on(dev);
		}
	}
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
		ret = REG_READ(REG_GLOBAL, 0x1d);
		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

	/*
	 * Snapshot the hardware statistics counters for this port.
	 */
	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

	/*
	 * Wait for the snapshotting to complete.
	 */
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
	if (ret < 0)
		return;

	_val = ret << 16;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
	if (ret < 0)
		return;

	*val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
			   int port, uint8_t *data)
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
				 int port, uint64_t *data)
{
	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

	/*
	 * Read each of the counters.
	 */
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
		u32 high;

		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);
		else
			high = 0;

		data[i] = (((u64)high) << 32) | low;
	}

	mutex_unlock(&ps->stats_mutex);
}