Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
#define _FILE_OFFSET_BITS 64

#include <linux/kernel.h>

#include <byteswap.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>

#include "session.h"
#include "sort.h"
#include "util.h"

static int perf_session__open(struct perf_session *self, bool force)
{
	struct stat input_stat;

	if (!strcmp(self->filename, "-")) {
		self->fd_pipe = true;
		self->fd = STDIN_FILENO;

		if (perf_header__read(self, self->fd) < 0)
			pr_err("incompatible file format");

		return 0;
	}

	self->fd = open(self->filename, O_RDONLY);
	if (self->fd < 0) {
		int err = errno;

		pr_err("failed to open %s: %s", self->filename, strerror(err));
		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
			pr_err("  (try 'perf record' first)");
		pr_err("\n");
		return -errno;
	}

	if (fstat(self->fd, &input_stat) < 0)
		goto out_close;

	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
		pr_err("file %s not owned by current user or root\n",
		       self->filename);
		goto out_close;
	}

	if (!input_stat.st_size) {
		pr_info("zero-sized file (%s), nothing to do!\n",
			self->filename);
		goto out_close;
	}

	if (perf_header__read(self, self->fd) < 0) {
		pr_err("incompatible file format");
		goto out_close;
	}

	self->size = input_stat.st_size;
	return 0;

out_close:
	close(self->fd);
	self->fd = -1;
	return -1;
}

void perf_session__update_sample_type(struct perf_session *self)
{
	self->sample_type = perf_header__sample_type(&self->header);
}

int perf_session__create_kernel_maps(struct perf_session *self)
{
	int ret = machine__create_kernel_maps(&self->host_machine);

	if (ret >= 0)
		ret = machines__create_guest_kernel_maps(&self->machines);
	return ret;
}

static void perf_session__destroy_kernel_maps(struct perf_session *self)
{
	machine__destroy_kernel_maps(&self->host_machine);
	machines__destroy_guest_kernel_maps(&self->machines);
}

struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
{
	size_t len = filename ? strlen(filename) + 1 : 0;
	struct perf_session *self = zalloc(sizeof(*self) + len);

	if (self == NULL)
		goto out;

	if (perf_header__init(&self->header) < 0)
		goto out_free;

	memcpy(self->filename, filename, len);
	self->threads = RB_ROOT;
	INIT_LIST_HEAD(&self->dead_threads);
	self->hists_tree = RB_ROOT;
	self->last_match = NULL;
	self->mmap_window = 32;
	self->machines = RB_ROOT;
	self->repipe = repipe;
	INIT_LIST_HEAD(&self->ordered_samples.samples_head);
	machine__init(&self->host_machine, "", HOST_KERNEL_ID);

	if (mode == O_RDONLY) {
		if (perf_session__open(self, force) < 0)
			goto out_delete;
	} else if (mode == O_WRONLY) {
		/*
		 * In O_RDONLY mode this will be performed when reading the
		 * kernel MMAP event, in event__process_mmap().
		 */
		if (perf_session__create_kernel_maps(self) < 0)
			goto out_delete;
	}

	perf_session__update_sample_type(self);
out:
	return self;
out_free:
	free(self);
	return NULL;
out_delete:
	perf_session__delete(self);
	return NULL;
}

static void perf_session__delete_dead_threads(struct perf_session *self)
{
	struct thread *n, *t;

	list_for_each_entry_safe(t, n, &self->dead_threads, node) {
		list_del(&t->node);
		thread__delete(t);
	}
}

static void perf_session__delete_threads(struct perf_session *self)
{
	struct rb_node *nd = rb_first(&self->threads);

	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		rb_erase(&t->rb_node, &self->threads);
		nd = rb_next(nd);
		thread__delete(t);
	}
}

void perf_session__delete(struct perf_session *self)
{
	perf_header__exit(&self->header);
	perf_session__destroy_kernel_maps(self);
	perf_session__delete_dead_threads(self);
	perf_session__delete_threads(self);
	machine__exit(&self->host_machine);
	close(self->fd);
	free(self);
}

void perf_session__remove_thread(struct perf_session *self, struct thread *th)
{
	self->last_match = NULL;
	rb_erase(&th->rb_node, &self->threads);
	/*
	 * We may have references to this thread, for instance in some hist_entry
	 * instances, so just move them to a separate list.
	 */
	list_add_tail(&th->node, &self->dead_threads);
}

static bool symbol__match_parent_regex(struct symbol *sym)
{
	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
		return 1;

	return 0;
}

struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
						   struct thread *thread,
						   struct ip_callchain *chain,
						   struct symbol **parent)
{
	u8 cpumode = PERF_RECORD_MISC_USER;
	unsigned int i;
	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));

	if (!syms)
		return NULL;

	for (i = 0; i < chain->nr; i++) {
		u64 ip = chain->ips[i];
		struct addr_location al;

		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
			case PERF_CONTEXT_KERNEL:
				cpumode = PERF_RECORD_MISC_KERNEL;	break;
			case PERF_CONTEXT_USER:
				cpumode = PERF_RECORD_MISC_USER;	break;
			default:
				break;
			}
			continue;
		}

		al.filtered = false;
		thread__find_addr_location(thread, self, cpumode,
				MAP__FUNCTION, thread->pid, ip, &al, NULL);
		if (al.sym != NULL) {
			if (sort__has_parent && !*parent &&
			    symbol__match_parent_regex(al.sym))
				*parent = al.sym;
			if (!symbol_conf.use_callchain)
				break;
			syms[i].map = al.map;
			syms[i].sym = al.sym;
		}
	}

	return syms;
}

static int process_event_stub(event_t *event __used,
			      struct perf_session *session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

static int process_finished_round_stub(event_t *event __used,
				       struct perf_session *session __used,
				       struct perf_event_ops *ops __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

static int process_finished_round(event_t *event,
				  struct perf_session *session,
				  struct perf_event_ops *ops);

static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
{
	if (handler->sample == NULL)
		handler->sample = process_event_stub;
	if (handler->mmap == NULL)
		handler->mmap = process_event_stub;
	if (handler->comm == NULL)
		handler->comm = process_event_stub;
	if (handler->fork == NULL)
		handler->fork = process_event_stub;
	if (handler->exit == NULL)
		handler->exit = process_event_stub;
	if (handler->lost == NULL)
		handler->lost = process_event_stub;
	if (handler->read == NULL)
		handler->read = process_event_stub;
	if (handler->throttle == NULL)
		handler->throttle = process_event_stub;
	if (handler->unthrottle == NULL)
		handler->unthrottle = process_event_stub;
	if (handler->attr == NULL)
		handler->attr = process_event_stub;
	if (handler->event_type == NULL)
		handler->event_type = process_event_stub;
	if (handler->tracing_data == NULL)
		handler->tracing_data = process_event_stub;
	if (handler->build_id == NULL)
		handler->build_id = process_event_stub;
	if (handler->finished_round == NULL) {
		if (handler->ordered_samples)
			handler->finished_round = process_finished_round;
		else
			handler->finished_round = process_finished_round_stub;
	}
}

void mem_bswap_64(void *src, int byte_size)
{
	u64 *m = src;

	while (byte_size > 0) {
		*m = bswap_64(*m);
		byte_size -= sizeof(u64);
		++m;
	}
}

static void event__all64_swap(event_t *self)
{
	struct perf_event_header *hdr = &self->header;
	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
}

static void event__comm_swap(event_t *self)
{
	self->comm.pid = bswap_32(self->comm.pid);
	self->comm.tid = bswap_32(self->comm.tid);
}

static void event__mmap_swap(event_t *self)
{
	self->mmap.pid	 = bswap_32(self->mmap.pid);
	self->mmap.tid	 = bswap_32(self->mmap.tid);
	self->mmap.start = bswap_64(self->mmap.start);
	self->mmap.len	 = bswap_64(self->mmap.len);
	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
}

static void event__task_swap(event_t *self)
{
	self->fork.pid	= bswap_32(self->fork.pid);
	self->fork.tid	= bswap_32(self->fork.tid);
	self->fork.ppid	= bswap_32(self->fork.ppid);
	self->fork.ptid	= bswap_32(self->fork.ptid);
	self->fork.time	= bswap_64(self->fork.time);
}

static void event__read_swap(event_t *self)
{
	self->read.pid		= bswap_32(self->read.pid);
	self->read.tid		= bswap_32(self->read.tid);
	self->read.value	= bswap_64(self->read.value);
	self->read.time_enabled	= bswap_64(self->read.time_enabled);
	self->read.time_running	= bswap_64(self->read.time_running);
	self->read.id		= bswap_64(self->read.id);
}

static void event__attr_swap(event_t *self)
{
	size_t size;

	self->attr.attr.type		= bswap_32(self->attr.attr.type);
	self->attr.attr.size		= bswap_32(self->attr.attr.size);
	self->attr.attr.config		= bswap_64(self->attr.attr.config);
	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);

	size = self->header.size;
	size -= (void *)&self->attr.id - (void *)self;
	mem_bswap_64(self->attr.id, size);
}

static void event__event_type_swap(event_t *self)
{
	self->event_type.event_type.event_id =
		bswap_64(self->event_type.event_type.event_id);
}

static void event__tracing_data_swap(event_t *self)
{
	self->tracing_data.size = bswap_32(self->tracing_data.size);
}

typedef void (*event__swap_op)(event_t *self);

static event__swap_op event__swap_ops[] = {
	[PERF_RECORD_MMAP]   = event__mmap_swap,
	[PERF_RECORD_COMM]   = event__comm_swap,
	[PERF_RECORD_FORK]   = event__task_swap,
	[PERF_RECORD_EXIT]   = event__task_swap,
	[PERF_RECORD_LOST]   = event__all64_swap,
	[PERF_RECORD_READ]   = event__read_swap,
	[PERF_RECORD_SAMPLE] = event__all64_swap,
	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
	[PERF_RECORD_HEADER_MAX]    = NULL,
};

struct sample_queue {
	u64			timestamp;
	struct sample_event	*event;
	struct list_head	list;
};

static void flush_sample_queue(struct perf_session *s,
			       struct perf_event_ops *ops)
{
	struct list_head *head = &s->ordered_samples.samples_head;
	u64 limit = s->ordered_samples.next_flush;
	struct sample_queue *tmp, *iter;

	if (!ops->ordered_samples || !limit)
		return;

	list_for_each_entry_safe(iter, tmp, head, list) {
		if (iter->timestamp > limit)
			return;

		if (iter == s->ordered_samples.last_inserted)
			s->ordered_samples.last_inserted = NULL;

		ops->sample((event_t *)iter->event, s);

		s->ordered_samples.last_flush = iter->timestamp;
		list_del(&iter->list);
		free(iter->event);
		free(iter);
	}
}

/*
 * When perf record finishes a pass on every buffers, it records this pseudo
 * event.
 * We record the max timestamp t found in the pass n.
 * Assuming these timestamps are monotonic across cpus, we know that if
 * a buffer still has events with timestamps below t, they will be all
 * available and then read in the pass n + 1.
 * Hence when we start to read the pass n + 2, we can safely flush every
 * events with timestamps below t.
 *
 *    ============ PASS n =================
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          1          |         2
 *          2          |         3
 *          -          |         4  <--- max recorded
 *
 *    ============ PASS n + 1 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          3          |         5
 *          4          |         6
 *          5          |         7 <---- max recorded
 *
 *      Flush every events below timestamp 4
 *
 *    ============ PASS n + 2 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          6          |         8
 *          7          |         9
 *          -          |         10
 *
 *      Flush every events below timestamp 7
 *      etc...
 */
static int process_finished_round(event_t *event __used,
				  struct perf_session *session,
				  struct perf_event_ops *ops)
{
	flush_sample_queue(session, ops);
	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;

	return 0;
}

static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
{
	struct sample_queue *iter;

	list_for_each_entry_reverse(iter, head, list) {
		if (iter->timestamp < new->timestamp) {
			list_add(&new->list, &iter->list);
			return;
		}
	}

	list_add(&new->list, head);
}

static void __queue_sample_before(struct sample_queue *new,
				  struct sample_queue *iter,
				  struct list_head *head)
{
	list_for_each_entry_continue_reverse(iter, head, list) {
		if (iter->timestamp < new->timestamp) {
			list_add(&new->list, &iter->list);
			return;
		}
	}

	list_add(&new->list, head);
}

static void __queue_sample_after(struct sample_queue *new,
				 struct sample_queue *iter,
				 struct list_head *head)
{
	list_for_each_entry_continue(iter, head, list) {
		if (iter->timestamp > new->timestamp) {
			list_add_tail(&new->list, &iter->list);
			return;
		}
	}
	list_add_tail(&new->list, head);
}

/* The queue is ordered by time */
static void __queue_sample_event(struct sample_queue *new,
				 struct perf_session *s)
{
	struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
	struct list_head *head = &s->ordered_samples.samples_head;


	if (!last_inserted) {
		__queue_sample_end(new, head);
		return;
	}

	/*
	 * Most of the time the current event has a timestamp
	 * very close to the last event inserted, unless we just switched
	 * to another event buffer. Having a sorting based on a list and
	 * on the last inserted event that is close to the current one is
	 * probably more efficient than an rbtree based sorting.
	 */
	if (last_inserted->timestamp >= new->timestamp)
		__queue_sample_before(new, last_inserted, head);
	else
		__queue_sample_after(new, last_inserted, head);
}

static int queue_sample_event(event_t *event, struct sample_data *data,
			      struct perf_session *s)
{
	u64 timestamp = data->time;
	struct sample_queue *new;


	if (timestamp < s->ordered_samples.last_flush) {
		printf("Warning: Timestamp below last timeslice flush\n");
		return -EINVAL;
	}

	new = malloc(sizeof(*new));
	if (!new)
		return -ENOMEM;

	new->timestamp = timestamp;

	new->event = malloc(event->header.size);
	if (!new->event) {
		free(new);
		return -ENOMEM;
	}

	memcpy(new->event, event, event->header.size);

	__queue_sample_event(new, s);
	s->ordered_samples.last_inserted = new;

	if (new->timestamp > s->ordered_samples.max_timestamp)
		s->ordered_samples.max_timestamp = new->timestamp;

	return 0;
}

static int perf_session__process_sample(event_t *event, struct perf_session *s,
					struct perf_event_ops *ops)
{
	struct sample_data data;

	if (!ops->ordered_samples)
		return ops->sample(event, s);

	bzero(&data, sizeof(struct sample_data));
	event__parse_sample(event, s->sample_type, &data);

	queue_sample_event(event, &data, s);

	return 0;
}

static int perf_session__process_event(struct perf_session *self,
				       event_t *event,
				       struct perf_event_ops *ops,
				       u64 offset, u64 head)
{
	trace_event(event);

	if (event->header.type < PERF_RECORD_HEADER_MAX) {
		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
			    offset + head, event->header.size,
			    event__name[event->header.type]);
		hists__inc_nr_events(&self->hists, event->header.type);
	}

	if (self->header.needs_swap && event__swap_ops[event->header.type])
		event__swap_ops[event->header.type](event);

	switch (event->header.type) {
	case PERF_RECORD_SAMPLE:
		return perf_session__process_sample(event, self, ops);
	case PERF_RECORD_MMAP:
		return ops->mmap(event, self);
	case PERF_RECORD_COMM:
		return ops->comm(event, self);
	case PERF_RECORD_FORK:
		return ops->fork(event, self);
	case PERF_RECORD_EXIT:
		return ops->exit(event, self);
	case PERF_RECORD_LOST:
		return ops->lost(event, self);
	case PERF_RECORD_READ:
		return ops->read(event, self);
	case PERF_RECORD_THROTTLE:
		return ops->throttle(event, self);
	case PERF_RECORD_UNTHROTTLE:
		return ops->unthrottle(event, self);
	case PERF_RECORD_HEADER_ATTR:
		return ops->attr(event, self);
	case PERF_RECORD_HEADER_EVENT_TYPE:
		return ops->event_type(event, self);
	case PERF_RECORD_HEADER_TRACING_DATA:
		/* setup for reading amidst mmap */
		lseek(self->fd, offset + head, SEEK_SET);
		return ops->tracing_data(event, self);
	case PERF_RECORD_HEADER_BUILD_ID:
		return ops->build_id(event, self);
	case PERF_RECORD_FINISHED_ROUND:
		return ops->finished_round(event, self, ops);
	default:
		++self->hists.stats.nr_unknown_events;
		return -1;
	}
}

void perf_event_header__bswap(struct perf_event_header *self)
{
	self->type = bswap_32(self->type);
	self->misc = bswap_16(self->misc);
	self->size = bswap_16(self->size);
}

static struct thread *perf_session__register_idle_thread(struct perf_session *self)
{
	struct thread *thread = perf_session__findnew(self, 0);

	if (thread == NULL || thread__set_comm(thread, "swapper")) {
		pr_err("problem inserting idle task.\n");
		thread = NULL;
	}

	return thread;
}

int do_read(int fd, void *buf, size_t size)
{
	void *buf_start = buf;

	while (size) {
		int ret = read(fd, buf, size);

		if (ret <= 0)
			return ret;

		size -= ret;
		buf += ret;
	}

	return buf - buf_start;
}

#define session_done()	(*(volatile int *)(&session_done))
volatile int session_done;

static int __perf_session__process_pipe_events(struct perf_session *self,
					       struct perf_event_ops *ops)
{
	event_t event;
	uint32_t size;
	int skip = 0;
	u64 head;
	int err;
	void *p;

	perf_event_ops__fill_defaults(ops);

	head = 0;
more:
	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
	if (err <= 0) {
		if (err == 0)
			goto done;

		pr_err("failed to read event header\n");
		goto out_err;
	}

	if (self->header.needs_swap)
		perf_event_header__bswap(&event.header);

	size = event.header.size;
	if (size == 0)
		size = 8;

	p = &event;
	p += sizeof(struct perf_event_header);

	if (size - sizeof(struct perf_event_header)) {
		err = do_read(self->fd, p,
			      size - sizeof(struct perf_event_header));
		if (err <= 0) {
			if (err == 0) {
				pr_err("unexpected end of event stream\n");
				goto done;
			}

			pr_err("failed to read event data\n");
			goto out_err;
		}
	}

	if (size == 0 ||
	    (skip = perf_session__process_event(self, &event, ops,
						0, head)) < 0) {
		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
			    head, event.header.size, event.header.type);
		/*
		 * assume we lost track of the stream, check alignment, and
		 * increment a single u64 in the hope to catch on again 'soon'.
		 */
		if (unlikely(head & 7))
			head &= ~7ULL;

		size = 8;
	}

	head += size;

	dump_printf("\n%#Lx [%#x]: event: %d\n",
		    head, event.header.size, event.header.type);

	if (skip > 0)
		head += skip;

	if (!session_done())
		goto more;
done:
	err = 0;
out_err:
	return err;
}

int __perf_session__process_events(struct perf_session *self,
				   u64 data_offset, u64 data_size,
				   u64 file_size, struct perf_event_ops *ops)
{
	int err, mmap_prot, mmap_flags;
	u64 head, shift;
	u64 offset = 0;
	size_t	page_size;
	event_t *event;
	uint32_t size;
	char *buf;
	struct ui_progress *progress = ui_progress__new("Processing events...",
							self->size);
	if (progress == NULL)
		return -1;

	perf_event_ops__fill_defaults(ops);

	page_size = sysconf(_SC_PAGESIZE);

	head = data_offset;
	shift = page_size * (head / page_size);
	offset += shift;
	head -= shift;

	mmap_prot  = PROT_READ;
	mmap_flags = MAP_SHARED;

	if (self->header.needs_swap) {
		mmap_prot  |= PROT_WRITE;
		mmap_flags = MAP_PRIVATE;
	}
remap:
	buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
		   mmap_flags, self->fd, offset);
	if (buf == MAP_FAILED) {
		pr_err("failed to mmap file\n");
		err = -errno;
		goto out_err;
	}

more:
	event = (event_t *)(buf + head);
	ui_progress__update(progress, offset);

	if (self->header.needs_swap)
		perf_event_header__bswap(&event->header);
	size = event->header.size;
	if (size == 0)
		size = 8;

	if (head + event->header.size >= page_size * self->mmap_window) {
		int munmap_ret;

		shift = page_size * (head / page_size);

		munmap_ret = munmap(buf, page_size * self->mmap_window);
		assert(munmap_ret == 0);

		offset += shift;
		head -= shift;
		goto remap;
	}

	size = event->header.size;

	dump_printf("\n%#Lx [%#x]: event: %d\n",
		    offset + head, event->header.size, event->header.type);

	if (size == 0 ||
	    perf_session__process_event(self, event, ops, offset, head) < 0) {
		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
			    offset + head, event->header.size,
			    event->header.type);
		/*
		 * assume we lost track of the stream, check alignment, and
		 * increment a single u64 in the hope to catch on again 'soon'.
		 */
		if (unlikely(head & 7))
			head &= ~7ULL;

		size = 8;
	}

	head += size;

	if (offset + head >= data_offset + data_size)
		goto done;

	if (offset + head < file_size)
		goto more;
done:
	err = 0;
	/* do the final flush for ordered samples */
	self->ordered_samples.next_flush = ULLONG_MAX;
	flush_sample_queue(self, ops);
out_err:
	ui_progress__delete(progress);
	return err;
}

int perf_session__process_events(struct perf_session *self,
				 struct perf_event_ops *ops)
{
	int err;

	if (perf_session__register_idle_thread(self) == NULL)
		return -ENOMEM;

	if (!self->fd_pipe)
		err = __perf_session__process_events(self,
						     self->header.data_offset,
						     self->header.data_size,
						     self->size, ops);
	else
		err = __perf_session__process_pipe_events(self, ops);

	return err;
}

bool perf_session__has_traces(struct perf_session *self, const char *msg)
{
	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
		return false;
	}

	return true;
}

int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
					     const char *symbol_name,
					     u64 addr)
{
	char *bracket;
	enum map_type i;
	struct ref_reloc_sym *ref;

	ref = zalloc(sizeof(struct ref_reloc_sym));
	if (ref == NULL)
		return -ENOMEM;

	ref->name = strdup(symbol_name);
	if (ref->name == NULL) {
		free(ref);
		return -ENOMEM;
	}

	bracket = strchr(ref->name, ']');
	if (bracket)
		*bracket = '\0';

	ref->addr = addr;

	for (i = 0; i < MAP__NR_TYPES; ++i) {
		struct kmap *kmap = map__kmap(maps[i]);
		kmap->ref_reloc_sym = ref;
	}

	return 0;
}

size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
{
	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
	       machines__fprintf_dsos(&self->machines, fp);
}

size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
					  bool with_hits)
{
	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
}