Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
/*
 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
 * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*********************************\
* Protocol Control Unit Functions *
\*********************************/

#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"

/*******************\
* Generic functions *
\*******************/

/**
 * ath5k_hw_set_opmode - Set PCU operating mode
 *
 * @ah: The &struct ath5k_hw
 *
 * Initialize PCU for the various operating modes (AP/STA etc)
 *
 * NOTE: ah->ah_op_mode must be set before calling this.
 */
int ath5k_hw_set_opmode(struct ath5k_hw *ah)
{
	u32 pcu_reg, beacon_reg, low_id, high_id;


	/* Preserve rest settings */
	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
			| AR5K_STA_ID1_KEYSRCH_MODE
			| (ah->ah_version == AR5K_AR5210 ?
			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));

	beacon_reg = 0;

	ATH5K_TRACE(ah->ah_sc);

	switch (ah->ah_op_mode) {
	case NL80211_IFTYPE_ADHOC:
		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
		beacon_reg |= AR5K_BCR_ADHOC;
		if (ah->ah_version == AR5K_AR5210)
			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
		else
			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
		break;

	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_MESH_POINT:
		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
		beacon_reg |= AR5K_BCR_AP;
		if (ah->ah_version == AR5K_AR5210)
			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
		else
			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
		break;

	case NL80211_IFTYPE_STATION:
		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
			| (ah->ah_version == AR5K_AR5210 ?
				AR5K_STA_ID1_PWR_SV : 0);
	case NL80211_IFTYPE_MONITOR:
		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
			| (ah->ah_version == AR5K_AR5210 ?
				AR5K_STA_ID1_NO_PSPOLL : 0);
		break;

	default:
		return -EINVAL;
	}

	/*
	 * Set PCU registers
	 */
	low_id = AR5K_LOW_ID(ah->ah_sta_id);
	high_id = AR5K_HIGH_ID(ah->ah_sta_id);
	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);

	/*
	 * Set Beacon Control Register on 5210
	 */
	if (ah->ah_version == AR5K_AR5210)
		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);

	return 0;
}

/**
 * ath5k_hw_update - Update mib counters (mac layer statistics)
 *
 * @ah: The &struct ath5k_hw
 * @stats: The &struct ieee80211_low_level_stats we use to track
 * statistics on the driver
 *
 * Reads MIB counters from PCU and updates sw statistics. Must be
 * called after a MIB interrupt.
 */
void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
		struct ieee80211_low_level_stats  *stats)
{
	ATH5K_TRACE(ah->ah_sc);

	/* Read-And-Clear */
	stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
	stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
	stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
	stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);

	/* XXX: Should we use this to track beacon count ?
	 * -we read it anyway to clear the register */
	ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);

	/* Reset profile count registers on 5212*/
	if (ah->ah_version == AR5K_AR5212) {
		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
	}

	/* TODO: Handle ANI stats */
}

/**
 * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
 *
 * @ah: The &struct ath5k_hw
 * @high: Flag to determine if we want to use high transmition rate
 * for ACKs or not
 *
 * If high flag is set, we tell hw to use a set of control rates based on
 * the current transmition rate (check out control_rates array inside reset.c).
 * If not hw just uses the lowest rate available for the current modulation
 * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
 */
void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
{
	if (ah->ah_version != AR5K_AR5212)
		return;
	else {
		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
		if (high)
			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
		else
			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
	}
}


/******************\
* ACK/CTS Timeouts *
\******************/

/**
 * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
 *
 * @ah: The &struct ath5k_hw
 */
unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);

	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
			AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
}

/**
 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
 *
 * @ah: The &struct ath5k_hw
 * @timeout: Timeout in usec
 */
int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
	ATH5K_TRACE(ah->ah_sc);
	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
			ah->ah_turbo) <= timeout)
		return -EINVAL;

	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
		ath5k_hw_htoclock(timeout, ah->ah_turbo));

	return 0;
}

/**
 * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
 *
 * @ah: The &struct ath5k_hw
 */
unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
			AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
}

/**
 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
 *
 * @ah: The &struct ath5k_hw
 * @timeout: Timeout in usec
 */
int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
	ATH5K_TRACE(ah->ah_sc);
	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
			ah->ah_turbo) <= timeout)
		return -EINVAL;

	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
			ath5k_hw_htoclock(timeout, ah->ah_turbo));

	return 0;
}


/****************\
* BSSID handling *
\****************/

/**
 * ath5k_hw_get_lladdr - Get station id
 *
 * @ah: The &struct ath5k_hw
 * @mac: The card's mac address
 *
 * Initialize ah->ah_sta_id using the mac address provided
 * (just a memcpy).
 *
 * TODO: Remove it once we merge ath5k_softc and ath5k_hw
 */
void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
{
	ATH5K_TRACE(ah->ah_sc);
	memcpy(mac, ah->ah_sta_id, ETH_ALEN);
}

/**
 * ath5k_hw_set_lladdr - Set station id
 *
 * @ah: The &struct ath5k_hw
 * @mac: The card's mac address
 *
 * Set station id on hw using the provided mac address
 */
int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
{
	u32 low_id, high_id;
	u32 pcu_reg;

	ATH5K_TRACE(ah->ah_sc);
	/* Set new station ID */
	memcpy(ah->ah_sta_id, mac, ETH_ALEN);

	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;

	low_id = AR5K_LOW_ID(mac);
	high_id = AR5K_HIGH_ID(mac);

	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);

	return 0;
}

/**
 * ath5k_hw_set_associd - Set BSSID for association
 *
 * @ah: The &struct ath5k_hw
 * @bssid: BSSID
 * @assoc_id: Assoc id
 *
 * Sets the BSSID which trigers the "SME Join" operation
 */
void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
{
	u32 low_id, high_id;
	u16 tim_offset = 0;

	/*
	 * Set simple BSSID mask on 5212
	 */
	if (ah->ah_version == AR5K_AR5212) {
		ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
							AR5K_BSS_IDM0);
		ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
							AR5K_BSS_IDM1);
	}

	/*
	 * Set BSSID which triggers the "SME Join" operation
	 */
	low_id = AR5K_LOW_ID(bssid);
	high_id = AR5K_HIGH_ID(bssid);
	ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
	ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
				AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);

	if (assoc_id == 0) {
		ath5k_hw_disable_pspoll(ah);
		return;
	}

	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
			tim_offset ? tim_offset + 4 : 0);

	ath5k_hw_enable_pspoll(ah, NULL, 0);
}

/**
 * ath5k_hw_set_bssid_mask - filter out bssids we listen
 *
 * @ah: the &struct ath5k_hw
 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
 *
 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
 * which bits of the interface's MAC address should be looked at when trying
 * to decide which packets to ACK. In station mode and AP mode with a single
 * BSS every bit matters since we lock to only one BSS. In AP mode with
 * multiple BSSes (virtual interfaces) not every bit matters because hw must
 * accept frames for all BSSes and so we tweak some bits of our mac address
 * in order to have multiple BSSes.
 *
 * NOTE: This is a simple filter and does *not* filter out all
 * relevant frames. Some frames that are not for us might get ACKed from us
 * by PCU because they just match the mask.
 *
 * When handling multiple BSSes you can get the BSSID mask by computing the
 * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
 *
 * When you do this you are essentially computing the common bits of all your
 * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
 * the MAC address to obtain the relevant bits and compare the result with
 * (frame's BSSID & mask) to see if they match.
 */
/*
 * Simple example: on your card you have have two BSSes you have created with
 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
 *
 *                  \
 * MAC:                0001 |
 * BSSID-01:   0100 | --> Belongs to us
 * BSSID-02:   1001 |
 *                  /
 * -------------------
 * BSSID-03:   0110  | --> External
 * -------------------
 *
 * Our bssid_mask would then be:
 *
 *             On loop iteration for BSSID-01:
 *             ~(0001 ^ 0100)  -> ~(0101)
 *                             ->   1010
 *             bssid_mask      =    1010
 *
 *             On loop iteration for BSSID-02:
 *             bssid_mask &= ~(0001   ^   1001)
 *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
 *             bssid_mask =   (1010)  & ~(1001)
 *             bssid_mask =   (1010)  &  (0110)
 *             bssid_mask =   0010
 *
 * A bssid_mask of 0010 means "only pay attention to the second least
 * significant bit". This is because its the only bit common
 * amongst the MAC and all BSSIDs we support. To findout what the real
 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
 * or our MAC address (we assume the hardware uses the MAC address).
 *
 * Now, suppose there's an incoming frame for BSSID-03:
 *
 * IFRAME-01:  0110
 *
 * An easy eye-inspeciton of this already should tell you that this frame
 * will not pass our check. This is beacuse the bssid_mask tells the
 * hardware to only look at the second least significant bit and the
 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
 * as 1, which does not match 0.
 *
 * So with IFRAME-01 we *assume* the hardware will do:
 *
 *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
 *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
 *  --> allow = (0010) == 0000 ? 1 : 0;
 *  --> allow = 0
 *
 *  Lets now test a frame that should work:
 *
 * IFRAME-02:  0001 (we should allow)
 *
 *     allow = (0001 & 1010) == 1010
 *
 *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
 *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
 *  --> allow = (0010) == (0010)
 *  --> allow = 1
 *
 * Other examples:
 *
 * IFRAME-03:  0100 --> allowed
 * IFRAME-04:  1001 --> allowed
 * IFRAME-05:  1101 --> allowed but its not for us!!!
 *
 */
int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
{
	u32 low_id, high_id;
	ATH5K_TRACE(ah->ah_sc);

	/* Cache bssid mask so that we can restore it
	 * on reset */
	memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
	if (ah->ah_version == AR5K_AR5212) {
		low_id = AR5K_LOW_ID(mask);
		high_id = AR5K_HIGH_ID(mask);

		ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
		ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);

		return 0;
	}

	return -EIO;
}


/************\
* RX Control *
\************/

/**
 * ath5k_hw_start_rx_pcu - Start RX engine
 *
 * @ah: The &struct ath5k_hw
 *
 * Starts RX engine on PCU so that hw can process RXed frames
 * (ACK etc).
 *
 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
 * TODO: Init ANI here
 */
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}

/**
 * at5k_hw_stop_rx_pcu - Stop RX engine
 *
 * @ah: The &struct ath5k_hw
 *
 * Stops RX engine on PCU
 *
 * TODO: Detach ANI here
 */
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}

/*
 * Set multicast filter
 */
void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
{
	ATH5K_TRACE(ah->ah_sc);
	/* Set the multicat filter */
	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
}

/*
 * Set multicast filter by index
 */
int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
{

	ATH5K_TRACE(ah->ah_sc);
	if (index >= 64)
		return -EINVAL;
	else if (index >= 32)
		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
				(1 << (index - 32)));
	else
		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));

	return 0;
}

/*
 * Clear Multicast filter by index
 */
int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
{

	ATH5K_TRACE(ah->ah_sc);
	if (index >= 64)
		return -EINVAL;
	else if (index >= 32)
		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
				(1 << (index - 32)));
	else
		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));

	return 0;
}

/**
 * ath5k_hw_get_rx_filter - Get current rx filter
 *
 * @ah: The &struct ath5k_hw
 *
 * Returns the RX filter by reading rx filter and
 * phy error filter registers. RX filter is used
 * to set the allowed frame types that PCU will accept
 * and pass to the driver. For a list of frame types
 * check out reg.h.
 */
u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
{
	u32 data, filter = 0;

	ATH5K_TRACE(ah->ah_sc);
	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);

	/*Radar detection for 5212*/
	if (ah->ah_version == AR5K_AR5212) {
		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);

		if (data & AR5K_PHY_ERR_FIL_RADAR)
			filter |= AR5K_RX_FILTER_RADARERR;
		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
			filter |= AR5K_RX_FILTER_PHYERR;
	}

	return filter;
}

/**
 * ath5k_hw_set_rx_filter - Set rx filter
 *
 * @ah: The &struct ath5k_hw
 * @filter: RX filter mask (see reg.h)
 *
 * Sets RX filter register and also handles PHY error filter
 * register on 5212 and newer chips so that we have proper PHY
 * error reporting.
 */
void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
{
	u32 data = 0;

	ATH5K_TRACE(ah->ah_sc);

	/* Set PHY error filter register on 5212*/
	if (ah->ah_version == AR5K_AR5212) {
		if (filter & AR5K_RX_FILTER_RADARERR)
			data |= AR5K_PHY_ERR_FIL_RADAR;
		if (filter & AR5K_RX_FILTER_PHYERR)
			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
	}

	/*
	 * The AR5210 uses promiscous mode to detect radar activity
	 */
	if (ah->ah_version == AR5K_AR5210 &&
			(filter & AR5K_RX_FILTER_RADARERR)) {
		filter &= ~AR5K_RX_FILTER_RADARERR;
		filter |= AR5K_RX_FILTER_PROM;
	}

	/*Zero length DMA (phy error reporting) */
	if (data)
		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
	else
		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);

	/*Write RX Filter register*/
	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);

	/*Write PHY error filter register on 5212*/
	if (ah->ah_version == AR5K_AR5212)
		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);

}


/****************\
* Beacon control *
\****************/

/**
 * ath5k_hw_get_tsf32 - Get a 32bit TSF
 *
 * @ah: The &struct ath5k_hw
 *
 * Returns lower 32 bits of current TSF
 */
u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
}

/**
 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
 *
 * @ah: The &struct ath5k_hw
 *
 * Returns the current TSF
 */
u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
{
	u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
	ATH5K_TRACE(ah->ah_sc);

	return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
}

/**
 * ath5k_hw_set_tsf64 - Set a new 64bit TSF
 *
 * @ah: The &struct ath5k_hw
 * @tsf64: The new 64bit TSF
 *
 * Sets the new TSF
 */
void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
{
	ATH5K_TRACE(ah->ah_sc);

	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
}

/**
 * ath5k_hw_reset_tsf - Force a TSF reset
 *
 * @ah: The &struct ath5k_hw
 *
 * Forces a TSF reset on PCU
 */
void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
{
	u32 val;

	ATH5K_TRACE(ah->ah_sc);

	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;

	/*
	 * Each write to the RESET_TSF bit toggles a hardware internal
	 * signal to reset TSF, but if left high it will cause a TSF reset
	 * on the next chip reset as well.  Thus we always write the value
	 * twice to clear the signal.
	 */
	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
}

/*
 * Initialize beacon timers
 */
void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
{
	u32 timer1, timer2, timer3;

	ATH5K_TRACE(ah->ah_sc);
	/*
	 * Set the additional timers by mode
	 */
	switch (ah->ah_op_mode) {
	case NL80211_IFTYPE_MONITOR:
	case NL80211_IFTYPE_STATION:
		/* In STA mode timer1 is used as next wakeup
		 * timer and timer2 as next CFP duration start
		 * timer. Both in 1/8TUs. */
		/* TODO: PCF handling */
		if (ah->ah_version == AR5K_AR5210) {
			timer1 = 0xffffffff;
			timer2 = 0xffffffff;
		} else {
			timer1 = 0x0000ffff;
			timer2 = 0x0007ffff;
		}
		/* Mark associated AP as PCF incapable for now */
		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
		break;
	case NL80211_IFTYPE_ADHOC:
		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
	default:
		/* On non-STA modes timer1 is used as next DMA
		 * beacon alert (DBA) timer and timer2 as next
		 * software beacon alert. Both in 1/8TUs. */
		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
		break;
	}

	/* Timer3 marks the end of our ATIM window
	 * a zero length window is not allowed because
	 * we 'll get no beacons */
	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);

	/*
	 * Set the beacon register and enable all timers.
	 */
	/* When in AP or Mesh Point mode zero timer0 to start TSF */
	if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
	    ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);

	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);

	/* Force a TSF reset if requested and enable beacons */
	if (interval & AR5K_BEACON_RESET_TSF)
		ath5k_hw_reset_tsf(ah);

	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
					AR5K_BEACON_ENABLE),
						AR5K_BEACON);

	/* Flush any pending BMISS interrupts on ISR by
	 * performing a clear-on-write operation on PISR
	 * register for the BMISS bit (writing a bit on
	 * ISR togles a reset for that bit and leaves
	 * the rest bits intact) */
	if (ah->ah_version == AR5K_AR5210)
		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
	else
		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);

	/* TODO: Set enchanced sleep registers on AR5212
	 * based on vif->bss_conf params, until then
	 * disable power save reporting.*/
	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);

}

#if 0
/*
 * Set beacon timers
 */
int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
		const struct ath5k_beacon_state *state)
{
	u32 cfp_period, next_cfp, dtim, interval, next_beacon;

	/*
	 * TODO: should be changed through *state
	 * review struct ath5k_beacon_state struct
	 *
	 * XXX: These are used for cfp period bellow, are they
	 * ok ? Is it O.K. for tsf here to be 0 or should we use
	 * get_tsf ?
	 */
	u32 dtim_count = 0; /* XXX */
	u32 cfp_count = 0; /* XXX */
	u32 tsf = 0; /* XXX */

	ATH5K_TRACE(ah->ah_sc);
	/* Return on an invalid beacon state */
	if (state->bs_interval < 1)
		return -EINVAL;

	interval = state->bs_interval;
	dtim = state->bs_dtim_period;

	/*
	 * PCF support?
	 */
	if (state->bs_cfp_period > 0) {
		/*
		 * Enable PCF mode and set the CFP
		 * (Contention Free Period) and timer registers
		 */
		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
			state->bs_interval;
		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
			state->bs_interval;

		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
				AR5K_STA_ID1_DEFAULT_ANTENNA |
				AR5K_STA_ID1_PCF);
		ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
		ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
				AR5K_CFP_DUR);
		ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
						next_cfp)) << 3, AR5K_TIMER2);
	} else {
		/* Disable PCF mode */
		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
				AR5K_STA_ID1_DEFAULT_ANTENNA |
				AR5K_STA_ID1_PCF);
	}

	/*
	 * Enable the beacon timer register
	 */
	ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);

	/*
	 * Start the beacon timers
	 */
	ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
		~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
		AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
		AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
		AR5K_BEACON_PERIOD), AR5K_BEACON);

	/*
	 * Write new beacon miss threshold, if it appears to be valid
	 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
	 * and return if its not in range. We can test this by reading value and
	 * setting value to a largest value and seeing which values register.
	 */

	AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
			state->bs_bmiss_threshold);

	/*
	 * Set sleep control register
	 * XXX: Didn't find this in 5210 code but since this register
	 * exists also in ar5k's 5210 headers i leave it as common code.
	 */
	AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
			(state->bs_sleep_duration - 3) << 3);

	/*
	 * Set enhanced sleep registers on 5212
	 */
	if (ah->ah_version == AR5K_AR5212) {
		if (state->bs_sleep_duration > state->bs_interval &&
				roundup(state->bs_sleep_duration, interval) ==
				state->bs_sleep_duration)
			interval = state->bs_sleep_duration;

		if (state->bs_sleep_duration > dtim && (dtim == 0 ||
				roundup(state->bs_sleep_duration, dtim) ==
				state->bs_sleep_duration))
			dtim = state->bs_sleep_duration;

		if (interval > dtim)
			return -EINVAL;

		next_beacon = interval == dtim ? state->bs_next_dtim :
			state->bs_next_beacon;

		ath5k_hw_reg_write(ah,
			AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
			AR5K_SLEEP0_NEXT_DTIM) |
			AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
			AR5K_SLEEP0_ENH_SLEEP_EN |
			AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);

		ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
			AR5K_SLEEP1_NEXT_TIM) |
			AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);

		ath5k_hw_reg_write(ah,
			AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
			AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
	}

	return 0;
}

/*
 * Reset beacon timers
 */
void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	/*
	 * Disable beacon timer
	 */
	ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);

	/*
	 * Disable some beacon register values
	 */
	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
			AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
	ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
}

/*
 * Wait for beacon queue to finish
 */
int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
{
	unsigned int i;
	int ret;

	ATH5K_TRACE(ah->ah_sc);

	/* 5210 doesn't have QCU*/
	if (ah->ah_version == AR5K_AR5210) {
		/*
		 * Wait for beaconn queue to finish by checking
		 * Control Register and Beacon Status Register.
		 */
		for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
			if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
					||
			    !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
				break;
			udelay(10);
		}

		/* Timeout... */
		if (i <= 0) {
			/*
			 * Re-schedule the beacon queue
			 */
			ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
			ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
					AR5K_BCR);

			return -EIO;
		}
		ret = 0;
	} else {
	/*5211/5212*/
		ret = ath5k_hw_register_timeout(ah,
			AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
			AR5K_QCU_STS_FRMPENDCNT, 0, false);

		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
			return -EIO;
	}

	return ret;
}
#endif


/*********************\
* Key table functions *
\*********************/

/*
 * Reset a key entry on the table
 */
int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
{
	unsigned int i, type;
	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;

	ATH5K_TRACE(ah->ah_sc);
	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);

	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));

	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));

	/* Reset associated MIC entry if TKIP
	 * is enabled located at offset (entry + 64) */
	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
			ath5k_hw_reg_write(ah, 0,
				AR5K_KEYTABLE_OFF(micentry, i));
	}

	/*
	 * Set NULL encryption on AR5212+
	 *
	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
	 *
	 * Note2: Windows driver (ndiswrapper) sets this to
	 *        0x00000714 instead of 0x00000007
	 */
	if (ah->ah_version >= AR5K_AR5211) {
		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
				AR5K_KEYTABLE_TYPE(entry));

		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
				AR5K_KEYTABLE_TYPE(micentry));
		}
	}

	return 0;
}

/*
 * Check if a table entry is valid
 */
int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
{
	ATH5K_TRACE(ah->ah_sc);
	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);

	/* Check the validation flag at the end of the entry */
	return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
		AR5K_KEYTABLE_VALID;
}

static
int ath5k_keycache_type(const struct ieee80211_key_conf *key)
{
	switch (key->alg) {
	case ALG_TKIP:
		return AR5K_KEYTABLE_TYPE_TKIP;
	case ALG_CCMP:
		return AR5K_KEYTABLE_TYPE_CCM;
	case ALG_WEP:
		if (key->keylen == WLAN_KEY_LEN_WEP40)
			return AR5K_KEYTABLE_TYPE_40;
		else if (key->keylen == WLAN_KEY_LEN_WEP104)
			return AR5K_KEYTABLE_TYPE_104;
		return -EINVAL;
	default:
		return -EINVAL;
	}
	return -EINVAL;
}

/*
 * Set a key entry on the table
 */
int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
		const struct ieee80211_key_conf *key, const u8 *mac)
{
	unsigned int i;
	int keylen;
	__le32 key_v[5] = {};
	__le32 key0 = 0, key1 = 0;
	__le32 *rxmic, *txmic;
	int keytype;
	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
	bool is_tkip;
	const u8 *key_ptr;

	ATH5K_TRACE(ah->ah_sc);

	is_tkip = (key->alg == ALG_TKIP);

	/*
	 * key->keylen comes in from mac80211 in bytes.
	 * TKIP is 128 bit + 128 bit mic
	 */
	keylen = (is_tkip) ? (128 / 8) : key->keylen;

	if (entry > AR5K_KEYTABLE_SIZE ||
		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
		return -EOPNOTSUPP;

	if (unlikely(keylen > 16))
		return -EOPNOTSUPP;

	keytype = ath5k_keycache_type(key);
	if (keytype < 0)
		return keytype;

	/*
	 * each key block is 6 bytes wide, written as pairs of
	 * alternating 32 and 16 bit le values.
	 */
	key_ptr = key->key;
	for (i = 0; keylen >= 6; keylen -= 6) {
		memcpy(&key_v[i], key_ptr, 6);
		i += 2;
		key_ptr += 6;
	}
	if (keylen)
		memcpy(&key_v[i], key_ptr, keylen);

	/* intentionally corrupt key until mic is installed */
	if (is_tkip) {
		key0 = key_v[0] = ~key_v[0];
		key1 = key_v[1] = ~key_v[1];
	}

	for (i = 0; i < ARRAY_SIZE(key_v); i++)
		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
				AR5K_KEYTABLE_OFF(entry, i));

	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));

	if (is_tkip) {
		/* Install rx/tx MIC */
		rxmic = (__le32 *) &key->key[16];
		txmic = (__le32 *) &key->key[24];

		if (ah->ah_combined_mic) {
			key_v[0] = rxmic[0];
			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
			key_v[2] = rxmic[1];
			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
			key_v[4] = txmic[1];
		} else {
			key_v[0] = rxmic[0];
			key_v[1] = 0;
			key_v[2] = rxmic[1];
			key_v[3] = 0;
			key_v[4] = 0;
		}
		for (i = 0; i < ARRAY_SIZE(key_v); i++)
			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
				AR5K_KEYTABLE_OFF(micentry, i));

		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
			AR5K_KEYTABLE_TYPE(micentry));
		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));

		/* restore first 2 words of key */
		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
			AR5K_KEYTABLE_OFF(entry, 0));
		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
			AR5K_KEYTABLE_OFF(entry, 1));
	}

	return ath5k_hw_set_key_lladdr(ah, entry, mac);
}

int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
{
	u32 low_id, high_id;

	ATH5K_TRACE(ah->ah_sc);
	 /* Invalid entry (key table overflow) */
	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);

	/* MAC may be NULL if it's a broadcast key. In this case no need to
	 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
	if (!mac) {
		low_id = 0xffffffff;
		high_id = 0xffff | AR5K_KEYTABLE_VALID;
	} else {
		low_id = AR5K_LOW_ID(mac);
		high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
	}

	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));

	return 0;
}