Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/*
 * SN Platform GRU Driver
 *
 *            GRU DRIVER TABLES, MACROS, externs, etc
 *
 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#ifndef __GRUTABLES_H__
#define __GRUTABLES_H__

/*
 * GRU Chiplet:
 *   The GRU is a user addressible memory accelerator. It provides
 *   several forms of load, store, memset, bcopy instructions. In addition, it
 *   contains special instructions for AMOs, sending messages to message
 *   queues, etc.
 *
 *   The GRU is an integral part of the node controller. It connects
 *   directly to the cpu socket. In its current implementation, there are 2
 *   GRU chiplets in the node controller on each blade (~node).
 *
 *   The entire GRU memory space is fully coherent and cacheable by the cpus.
 *
 *   Each GRU chiplet has a physical memory map that looks like the following:
 *
 *   	+-----------------+
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	|/////////////////|
 *   	+-----------------+
 *   	|  system control |
 *   	+-----------------+        _______ +-------------+
 *   	|/////////////////|       /        |             |
 *   	|/////////////////|      /         |             |
 *   	|/////////////////|     /          | instructions|
 *   	|/////////////////|    /           |             |
 *   	|/////////////////|   /            |             |
 *   	|/////////////////|  /             |-------------|
 *   	|/////////////////| /              |             |
 *   	+-----------------+                |             |
 *   	|   context 15    |                |  data       |
 *   	+-----------------+                |             |
 *   	|    ......       | \              |             |
 *   	+-----------------+  \____________ +-------------+
 *   	|   context 1     |
 *   	+-----------------+
 *   	|   context 0     |
 *   	+-----------------+
 *
 *   Each of the "contexts" is a chunk of memory that can be mmaped into user
 *   space. The context consists of 2 parts:
 *
 *  	- an instruction space that can be directly accessed by the user
 *  	  to issue GRU instructions and to check instruction status.
 *
 *  	- a data area that acts as normal RAM.
 *
 *   User instructions contain virtual addresses of data to be accessed by the
 *   GRU. The GRU contains a TLB that is used to convert these user virtual
 *   addresses to physical addresses.
 *
 *   The "system control" area of the GRU chiplet is used by the kernel driver
 *   to manage user contexts and to perform functions such as TLB dropin and
 *   purging.
 *
 *   One context may be reserved for the kernel and used for cross-partition
 *   communication. The GRU will also be used to asynchronously zero out
 *   large blocks of memory (not currently implemented).
 *
 *
 * Tables:
 *
 * 	VDATA-VMA Data		- Holds a few parameters. Head of linked list of
 * 				  GTS tables for threads using the GSEG
 * 	GTS - Gru Thread State  - contains info for managing a GSEG context. A
 * 				  GTS is allocated for each thread accessing a
 * 				  GSEG.
 *     	GTD - GRU Thread Data   - contains shadow copy of GRU data when GSEG is
 *     				  not loaded into a GRU
 *	GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs
 *				  where a GSEG has been loaded. Similar to
 *				  an mm_struct but for GRU.
 *
 *	GS  - GRU State 	- Used to manage the state of a GRU chiplet
 *	BS  - Blade State	- Used to manage state of all GRU chiplets
 *				  on a blade
 *
 *
 *  Normal task tables for task using GRU.
 *  		- 2 threads in process
 *  		- 2 GSEGs open in process
 *  		- GSEG1 is being used by both threads
 *  		- GSEG2 is used only by thread 2
 *
 *       task -->|
 *       task ---+---> mm ->------ (notifier) -------+-> gms
 *                     |                             |
 *                     |--> vma -> vdata ---> gts--->|		GSEG1 (thread1)
 *                     |                  |          |
 *                     |                  +-> gts--->|		GSEG1 (thread2)
 *                     |                             |
 *                     |--> vma -> vdata ---> gts--->|		GSEG2 (thread2)
 *                     .
 *                     .
 *
 *  GSEGs are marked DONTCOPY on fork
 *
 * At open
 * 	file.private_data -> NULL
 *
 * At mmap,
 * 	vma -> vdata
 *
 * After gseg reference
 * 	vma -> vdata ->gts
 *
 * After fork
 *   parent
 * 	vma -> vdata -> gts
 *   child
 * 	(vma is not copied)
 *
 */

#include <linux/rmap.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/mmu_notifier.h>
#include "gru.h"
#include "gruhandles.h"

extern struct gru_stats_s gru_stats;
extern struct gru_blade_state *gru_base[];
extern unsigned long gru_start_paddr, gru_end_paddr;

#define GRU_MAX_BLADES		MAX_NUMNODES
#define GRU_MAX_GRUS		(GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE)

#define GRU_DRIVER_ID_STR	"SGI GRU Device Driver"
#define GRU_DRIVER_VERSION_STR	"0.80"

/*
 * GRU statistics.
 */
struct gru_stats_s {
	atomic_long_t vdata_alloc;
	atomic_long_t vdata_free;
	atomic_long_t gts_alloc;
	atomic_long_t gts_free;
	atomic_long_t vdata_double_alloc;
	atomic_long_t gts_double_allocate;
	atomic_long_t assign_context;
	atomic_long_t assign_context_failed;
	atomic_long_t free_context;
	atomic_long_t load_context;
	atomic_long_t unload_context;
	atomic_long_t steal_context;
	atomic_long_t steal_context_failed;
	atomic_long_t nopfn;
	atomic_long_t break_cow;
	atomic_long_t asid_new;
	atomic_long_t asid_next;
	atomic_long_t asid_wrap;
	atomic_long_t asid_reuse;
	atomic_long_t intr;
	atomic_long_t call_os;
	atomic_long_t call_os_check_for_bug;
	atomic_long_t call_os_wait_queue;
	atomic_long_t user_flush_tlb;
	atomic_long_t user_unload_context;
	atomic_long_t user_exception;
	atomic_long_t set_task_slice;
	atomic_long_t migrate_check;
	atomic_long_t migrated_retarget;
	atomic_long_t migrated_unload;
	atomic_long_t migrated_unload_delay;
	atomic_long_t migrated_nopfn_retarget;
	atomic_long_t migrated_nopfn_unload;
	atomic_long_t tlb_dropin;
	atomic_long_t tlb_dropin_fail_no_asid;
	atomic_long_t tlb_dropin_fail_upm;
	atomic_long_t tlb_dropin_fail_invalid;
	atomic_long_t tlb_dropin_fail_range_active;
	atomic_long_t tlb_dropin_fail_idle;
	atomic_long_t tlb_dropin_fail_fmm;
	atomic_long_t mmu_invalidate_range;
	atomic_long_t mmu_invalidate_page;
	atomic_long_t mmu_clear_flush_young;
	atomic_long_t flush_tlb;
	atomic_long_t flush_tlb_gru;
	atomic_long_t flush_tlb_gru_tgh;
	atomic_long_t flush_tlb_gru_zero_asid;

	atomic_long_t copy_gpa;

	atomic_long_t mesq_receive;
	atomic_long_t mesq_receive_none;
	atomic_long_t mesq_send;
	atomic_long_t mesq_send_failed;
	atomic_long_t mesq_noop;
	atomic_long_t mesq_send_unexpected_error;
	atomic_long_t mesq_send_lb_overflow;
	atomic_long_t mesq_send_qlimit_reached;
	atomic_long_t mesq_send_amo_nacked;
	atomic_long_t mesq_send_put_nacked;
	atomic_long_t mesq_qf_not_full;
	atomic_long_t mesq_qf_locked;
	atomic_long_t mesq_qf_noop_not_full;
	atomic_long_t mesq_qf_switch_head_failed;
	atomic_long_t mesq_qf_unexpected_error;
	atomic_long_t mesq_noop_unexpected_error;
	atomic_long_t mesq_noop_lb_overflow;
	atomic_long_t mesq_noop_qlimit_reached;
	atomic_long_t mesq_noop_amo_nacked;
	atomic_long_t mesq_noop_put_nacked;

};

#define OPT_DPRINT	1
#define OPT_STATS	2
#define GRU_QUICKLOOK	4


#define IRQ_GRU			110	/* Starting IRQ number for interrupts */

/* Delay in jiffies between attempts to assign a GRU context */
#define GRU_ASSIGN_DELAY	((HZ * 20) / 1000)

/*
 * If a process has it's context stolen, min delay in jiffies before trying to
 * steal a context from another process.
 */
#define GRU_STEAL_DELAY		((HZ * 200) / 1000)

#define STAT(id)	do {						\
				if (gru_options & OPT_STATS)		\
					atomic_long_inc(&gru_stats.id);	\
			} while (0)

#ifdef CONFIG_SGI_GRU_DEBUG
#define gru_dbg(dev, fmt, x...)						\
	do {								\
		if (gru_options & OPT_DPRINT)				\
			dev_dbg(dev, "%s: " fmt, __func__, x);		\
	} while (0)
#else
#define gru_dbg(x...)
#endif

/*-----------------------------------------------------------------------------
 * ASID management
 */
#define MAX_ASID	0xfffff0
#define MIN_ASID	8
#define ASID_INC	8	/* number of regions */

/* Generate a GRU asid value from a GRU base asid & a virtual address. */
#if defined CONFIG_IA64
#define VADDR_HI_BIT		64
#define GRUREGION(addr)		((addr) >> (VADDR_HI_BIT - 3) & 3)
#elif defined CONFIG_X86_64
#define VADDR_HI_BIT		48
#define GRUREGION(addr)		(0)		/* ZZZ could do better */
#else
#error "Unsupported architecture"
#endif
#define GRUASID(asid, addr)	((asid) + GRUREGION(addr))

/*------------------------------------------------------------------------------
 *  File & VMS Tables
 */

struct gru_state;

/*
 * This structure is pointed to from the mmstruct via the notifier pointer.
 * There is one of these per address space.
 */
struct gru_mm_tracker {
	unsigned int		mt_asid_gen;	/* ASID wrap count */
	int			mt_asid;	/* current base ASID for gru */
	unsigned short		mt_ctxbitmap;	/* bitmap of contexts using
						   asid */
};

struct gru_mm_struct {
	struct mmu_notifier	ms_notifier;
	atomic_t		ms_refcnt;
	spinlock_t		ms_asid_lock;	/* protects ASID assignment */
	atomic_t		ms_range_active;/* num range_invals active */
	char			ms_released;
	wait_queue_head_t	ms_wait_queue;
	DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS);
	struct gru_mm_tracker	ms_asids[GRU_MAX_GRUS];
};

/*
 * One of these structures is allocated when a GSEG is mmaped. The
 * structure is pointed to by the vma->vm_private_data field in the vma struct.
 */
struct gru_vma_data {
	spinlock_t		vd_lock;	/* Serialize access to vma */
	struct list_head	vd_head;	/* head of linked list of gts */
	long			vd_user_options;/* misc user option flags */
	int			vd_cbr_au_count;
	int			vd_dsr_au_count;
};

/*
 * One of these is allocated for each thread accessing a mmaped GRU. A linked
 * list of these structure is hung off the struct gru_vma_data in the mm_struct.
 */
struct gru_thread_state {
	struct list_head	ts_next;	/* list - head at vma-private */
	struct mutex		ts_ctxlock;	/* load/unload CTX lock */
	struct mm_struct	*ts_mm;		/* mm currently mapped to
						   context */
	struct vm_area_struct	*ts_vma;	/* vma of GRU context */
	struct gru_state	*ts_gru;	/* GRU where the context is
						   loaded */
	struct gru_mm_struct	*ts_gms;	/* asid & ioproc struct */
	unsigned long		ts_cbr_map;	/* map of allocated CBRs */
	unsigned long		ts_dsr_map;	/* map of allocated DATA
						   resources */
	unsigned long		ts_steal_jiffies;/* jiffies when context last
						    stolen */
	long			ts_user_options;/* misc user option flags */
	pid_t			ts_tgid_owner;	/* task that is using the
						   context - for migration */
	int			ts_tsid;	/* thread that owns the
						   structure */
	int			ts_tlb_int_select;/* target cpu if interrupts
						     enabled */
	int			ts_ctxnum;	/* context number where the
						   context is loaded */
	atomic_t		ts_refcnt;	/* reference count GTS */
	unsigned char		ts_dsr_au_count;/* Number of DSR resources
						   required for contest */
	unsigned char		ts_cbr_au_count;/* Number of CBR resources
						   required for contest */
	char			ts_force_unload;/* force context to be unloaded
						   after migration */
	char			ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each
							  allocated CB */
	unsigned long		ts_gdata[0];	/* save area for GRU data (CB,
						   DS, CBE) */
};

/*
 * Threaded programs actually allocate an array of GSEGs when a context is
 * created. Each thread uses a separate GSEG. TSID is the index into the GSEG
 * array.
 */
#define TSID(a, v)		(((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE)
#define UGRUADDR(gts)		((gts)->ts_vma->vm_start +		\
					(gts)->ts_tsid * GRU_GSEG_PAGESIZE)

#define NULLCTX			(-1)	/* if context not loaded into GRU */

/*-----------------------------------------------------------------------------
 *  GRU State Tables
 */

/*
 * One of these exists for each GRU chiplet.
 */
struct gru_state {
	struct gru_blade_state	*gs_blade;		/* GRU state for entire
							   blade */
	unsigned long		gs_gru_base_paddr;	/* Physical address of
							   gru segments (64) */
	void			*gs_gru_base_vaddr;	/* Virtual address of
							   gru segments (64) */
	unsigned char		gs_gid;			/* unique GRU number */
	unsigned char		gs_tgh_local_shift;	/* used to pick TGH for
							   local flush */
	unsigned char		gs_tgh_first_remote;	/* starting TGH# for
							   remote flush */
	unsigned short		gs_blade_id;		/* blade of GRU */
	spinlock_t		gs_asid_lock;		/* lock used for
							   assigning asids */
	spinlock_t		gs_lock;		/* lock used for
							   assigning contexts */

	/* -- the following are protected by the gs_asid_lock spinlock ---- */
	unsigned int		gs_asid;		/* Next availe ASID */
	unsigned int		gs_asid_limit;		/* Limit of available
							   ASIDs */
	unsigned int		gs_asid_gen;		/* asid generation.
							   Inc on wrap */

	/* --- the following fields are protected by the gs_lock spinlock --- */
	unsigned long		gs_context_map;		/* bitmap to manage
							   contexts in use */
	unsigned long		gs_cbr_map;		/* bitmap to manage CB
							   resources */
	unsigned long		gs_dsr_map;		/* bitmap used to manage
							   DATA resources */
	unsigned int		gs_reserved_cbrs;	/* Number of kernel-
							   reserved cbrs */
	unsigned int		gs_reserved_dsr_bytes;	/* Bytes of kernel-
							   reserved dsrs */
	unsigned short		gs_active_contexts;	/* number of contexts
							   in use */
	struct gru_thread_state	*gs_gts[GRU_NUM_CCH];	/* GTS currently using
							   the context */
};

/*
 * This structure contains the GRU state for all the GRUs on a blade.
 */
struct gru_blade_state {
	void			*kernel_cb;		/* First kernel
							   reserved cb */
	void			*kernel_dsr;		/* First kernel
							   reserved DSR */
	/* ---- the following are protected by the bs_lock spinlock ---- */
	spinlock_t		bs_lock;		/* lock used for
							   stealing contexts */
	int			bs_lru_ctxnum;		/* STEAL - last context
							   stolen */
	struct gru_state	*bs_lru_gru;		/* STEAL - last gru
							   stolen */

	struct gru_state	bs_grus[GRU_CHIPLETS_PER_BLADE];
};

/*-----------------------------------------------------------------------------
 * Address Primitives
 */
#define get_tfm_for_cpu(g, c)						\
	((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c)))
#define get_tfh_by_index(g, i)						\
	((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i)))
#define get_tgh_by_index(g, i)						\
	((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i)))
#define get_cbe_by_index(g, i)						\
	((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\
			(i)))

/*-----------------------------------------------------------------------------
 * Useful Macros
 */

/* Given a blade# & chiplet#, get a pointer to the GRU */
#define get_gru(b, c)		(&gru_base[b]->bs_grus[c])

/* Number of bytes to save/restore when unloading/loading GRU contexts */
#define DSR_BYTES(dsr)		((dsr) * GRU_DSR_AU_BYTES)
#define CBR_BYTES(cbr)		((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2)

/* Convert a user CB number to the actual CBRNUM */
#define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \
				  * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE)

/* Convert a gid to a pointer to the GRU */
#define GID_TO_GRU(gid)							\
	(gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ?			\
		(&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]->		\
			bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) :	\
	 NULL)

/* Scan all active GRUs in a GRU bitmap */
#define for_each_gru_in_bitmap(gid, map)				\
	for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\
		(gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid)))

/* Scan all active GRUs on a specific blade */
#define for_each_gru_on_blade(gru, nid, i)				\
	for ((gru) = gru_base[nid]->bs_grus, (i) = 0;			\
			(i) < GRU_CHIPLETS_PER_BLADE;			\
			(i)++, (gru)++)

/* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */
#define for_each_gts_on_gru(gts, gru, ctxnum)				\
	for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++)		\
		if (((gts) = (gru)->gs_gts[ctxnum]))

/* Scan each CBR whose bit is set in a TFM (or copy of) */
#define for_each_cbr_in_tfm(i, map)					\
	for ((i) = find_first_bit(map, GRU_NUM_CBE);			\
			(i) < GRU_NUM_CBE;				\
			(i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i))

/* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */
#define for_each_cbr_in_allocation_map(i, map, k)			\
	for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU;	\
			(k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) 	\
		for ((i) = (k)*GRU_CBR_AU_SIZE;				\
				(i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++)

/* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */
#define for_each_dsr_in_allocation_map(i, map, k)			\
	for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\
			(k) < GRU_DSR_AU;				\
			(k) = find_next_bit((const unsigned long *)map,	\
					  GRU_DSR_AU, (k) + 1))		\
		for ((i) = (k) * GRU_DSR_AU_CL;				\
				(i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++)

#define gseg_physical_address(gru, ctxnum)				\
		((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE)
#define gseg_virtual_address(gru, ctxnum)				\
		((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE)

/*-----------------------------------------------------------------------------
 * Lock / Unlock GRU handles
 * 	Use the "delresp" bit in the handle as a "lock" bit.
 */

/* Lock hierarchy checking enabled only in emulator */

static inline void __lock_handle(void *h)
{
	while (test_and_set_bit(1, h))
		cpu_relax();
}

static inline void __unlock_handle(void *h)
{
	clear_bit(1, h);
}

static inline void lock_cch_handle(struct gru_context_configuration_handle *cch)
{
	__lock_handle(cch);
}

static inline void unlock_cch_handle(struct gru_context_configuration_handle
				     *cch)
{
	__unlock_handle(cch);
}

static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh)
{
	__lock_handle(tgh);
}

static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
{
	__unlock_handle(tgh);
}

/*-----------------------------------------------------------------------------
 * Function prototypes & externs
 */
struct gru_unload_context_req;

extern struct vm_operations_struct gru_vm_ops;
extern struct device *grudev;

extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma,
				int tsid);
extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct
				*vma, int tsid);
extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct
				*vma, int tsid);
extern void gru_unload_context(struct gru_thread_state *gts, int savestate);
extern void gts_drop(struct gru_thread_state *gts);
extern void gru_tgh_flush_init(struct gru_state *gru);
extern int gru_kservices_init(struct gru_state *gru);
extern irqreturn_t gru_intr(int irq, void *dev_id);
extern int gru_handle_user_call_os(unsigned long address);
extern int gru_user_flush_tlb(unsigned long arg);
extern int gru_user_unload_context(unsigned long arg);
extern int gru_get_exception_detail(unsigned long arg);
extern int gru_set_task_slice(long address);
extern int gru_cpu_fault_map_id(void);
extern struct vm_area_struct *gru_find_vma(unsigned long vaddr);
extern void gru_flush_all_tlb(struct gru_state *gru);
extern int gru_proc_init(void);
extern void gru_proc_exit(void);

extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
		int cbr_au_count, char *cbmap);
extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
		int dsr_au_count, char *dsmap);
extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf);
extern struct gru_mm_struct *gru_register_mmu_notifier(void);
extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms);

extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
					unsigned long len);

extern unsigned long gru_options;

#endif /* __GRUTABLES_H__ */