Free Electrons

Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
/*
 * Architecture-specific unaligned trap handling.
 *
 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
 *	Stephane Eranian <eranian@hpl.hp.com>
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
 *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
 *		stacked register returns an undefined value; it does NOT trigger a
 *		"rsvd register fault").
 * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops.
 * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes.
 * 2001/01/17	Add support emulation of unaligned kernel accesses.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tty.h>

#include <asm/intrinsics.h>
#include <asm/processor.h>
#include <asm/rse.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>

extern int die_if_kernel(char *str, struct pt_regs *regs, long err);

#undef DEBUG_UNALIGNED_TRAP

#ifdef DEBUG_UNALIGNED_TRAP
# define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
# define DDUMP(str,vp,len)	dump(str, vp, len)

static void
dump (const char *str, void *vp, size_t len)
{
	unsigned char *cp = vp;
	int i;

	printk("%s", str);
	for (i = 0; i < len; ++i)
		printk (" %02x", *cp++);
	printk("\n");
}
#else
# define DPRINT(a...)
# define DDUMP(str,vp,len)
#endif

#define IA64_FIRST_STACKED_GR	32
#define IA64_FIRST_ROTATING_FR	32
#define SIGN_EXT9		0xffffffffffffff00ul

/*
 *  sysctl settable hook which tells the kernel whether to honor the
 *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want
 *  to allow the super user to enable/disable this for security reasons
 *  (i.e. don't allow attacker to fill up logs with unaligned accesses).
 */
int no_unaligned_warning;
static int noprint_warning;

/*
 * For M-unit:
 *
 *  opcode |   m  |   x6    |
 * --------|------|---------|
 * [40-37] | [36] | [35:30] |
 * --------|------|---------|
 *     4   |   1  |    6    | = 11 bits
 * --------------------------
 * However bits [31:30] are not directly useful to distinguish between
 * load/store so we can use [35:32] instead, which gives the following
 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
 * checking the m-bit until later in the load/store emulation.
 */
#define IA64_OPCODE_MASK	0x1ef
#define IA64_OPCODE_SHIFT	32

/*
 * Table C-28 Integer Load/Store
 *
 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
 *
 * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
 * the address (bits [8:3]), so we must failed.
 */
#define LD_OP            0x080
#define LDS_OP           0x081
#define LDA_OP           0x082
#define LDSA_OP          0x083
#define LDBIAS_OP        0x084
#define LDACQ_OP         0x085
/* 0x086, 0x087 are not relevant */
#define LDCCLR_OP        0x088
#define LDCNC_OP         0x089
#define LDCCLRACQ_OP     0x08a
#define ST_OP            0x08c
#define STREL_OP         0x08d
/* 0x08e,0x8f are not relevant */

/*
 * Table C-29 Integer Load +Reg
 *
 * we use the ld->m (bit [36:36]) field to determine whether or not we have
 * a load/store of this form.
 */

/*
 * Table C-30 Integer Load/Store +Imm
 *
 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
 *
 * ld8.fill, st8.fill  must be aligned because the Nat register are based on
 * the address, so we must fail and the program must be fixed.
 */
#define LD_IMM_OP            0x0a0
#define LDS_IMM_OP           0x0a1
#define LDA_IMM_OP           0x0a2
#define LDSA_IMM_OP          0x0a3
#define LDBIAS_IMM_OP        0x0a4
#define LDACQ_IMM_OP         0x0a5
/* 0x0a6, 0xa7 are not relevant */
#define LDCCLR_IMM_OP        0x0a8
#define LDCNC_IMM_OP         0x0a9
#define LDCCLRACQ_IMM_OP     0x0aa
#define ST_IMM_OP            0x0ac
#define STREL_IMM_OP         0x0ad
/* 0x0ae,0xaf are not relevant */

/*
 * Table C-32 Floating-point Load/Store
 */
#define LDF_OP           0x0c0
#define LDFS_OP          0x0c1
#define LDFA_OP          0x0c2
#define LDFSA_OP         0x0c3
/* 0x0c6 is irrelevant */
#define LDFCCLR_OP       0x0c8
#define LDFCNC_OP        0x0c9
/* 0x0cb is irrelevant  */
#define STF_OP           0x0cc

/*
 * Table C-33 Floating-point Load +Reg
 *
 * we use the ld->m (bit [36:36]) field to determine whether or not we have
 * a load/store of this form.
 */

/*
 * Table C-34 Floating-point Load/Store +Imm
 */
#define LDF_IMM_OP       0x0e0
#define LDFS_IMM_OP      0x0e1
#define LDFA_IMM_OP      0x0e2
#define LDFSA_IMM_OP     0x0e3
/* 0x0e6 is irrelevant */
#define LDFCCLR_IMM_OP   0x0e8
#define LDFCNC_IMM_OP    0x0e9
#define STF_IMM_OP       0x0ec

typedef struct {
	unsigned long	 qp:6;	/* [0:5]   */
	unsigned long    r1:7;	/* [6:12]  */
	unsigned long   imm:7;	/* [13:19] */
	unsigned long    r3:7;	/* [20:26] */
	unsigned long     x:1;  /* [27:27] */
	unsigned long  hint:2;	/* [28:29] */
	unsigned long x6_sz:2;	/* [30:31] */
	unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */
	unsigned long     m:1;	/* [36:36] */
	unsigned long    op:4;	/* [37:40] */
	unsigned long   pad:23; /* [41:63] */
} load_store_t;


typedef enum {
	UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */
	UPD_REG		/* ldXZ r1=[r3],r2     */
} update_t;

/*
 * We use tables to keep track of the offsets of registers in the saved state.
 * This way we save having big switch/case statements.
 *
 * We use bit 0 to indicate switch_stack or pt_regs.
 * The offset is simply shifted by 1 bit.
 * A 2-byte value should be enough to hold any kind of offset
 *
 * In case the calling convention changes (and thus pt_regs/switch_stack)
 * simply use RSW instead of RPT or vice-versa.
 */

#define RPO(x)	((size_t) &((struct pt_regs *)0)->x)
#define RSO(x)	((size_t) &((struct switch_stack *)0)->x)

#define RPT(x)		(RPO(x) << 1)
#define RSW(x)		(1| RSO(x)<<1)

#define GR_OFFS(x)	(gr_info[x]>>1)
#define GR_IN_SW(x)	(gr_info[x] & 0x1)

#define FR_OFFS(x)	(fr_info[x]>>1)
#define FR_IN_SW(x)	(fr_info[x] & 0x1)

static u16 gr_info[32]={
	0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */

	RPT(r1), RPT(r2), RPT(r3),

	RSW(r4), RSW(r5), RSW(r6), RSW(r7),

	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
	RPT(r12), RPT(r13), RPT(r14), RPT(r15),

	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
};

static u16 fr_info[32]={
	0,			/* constant : WE SHOULD NEVER GET THIS */
	0,			/* constant : WE SHOULD NEVER GET THIS */

	RSW(f2), RSW(f3), RSW(f4), RSW(f5),

	RPT(f6), RPT(f7), RPT(f8), RPT(f9),
	RPT(f10), RPT(f11),

	RSW(f12), RSW(f13), RSW(f14),
	RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
	RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
	RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
	RSW(f30), RSW(f31)
};

/* Invalidate ALAT entry for integer register REGNO.  */
static void
invala_gr (int regno)
{
#	define F(reg)	case reg: ia64_invala_gr(reg); break

	switch (regno) {
		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
	}
#	undef F
}

/* Invalidate ALAT entry for floating-point register REGNO.  */
static void
invala_fr (int regno)
{
#	define F(reg)	case reg: ia64_invala_fr(reg); break

	switch (regno) {
		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
	}
#	undef F
}

static inline unsigned long
rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
{
	reg += rrb;
	if (reg >= sor)
		reg -= sor;
	return reg;
}

static void
set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
{
	struct switch_stack *sw = (struct switch_stack *) regs - 1;
	unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
	unsigned long rnats, nat_mask;
	unsigned long on_kbs;
	long sof = (regs->cr_ifs) & 0x7f;
	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
	long ridx = r1 - 32;

	if (ridx >= sof) {
		/* this should never happen, as the "rsvd register fault" has higher priority */
		DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
		return;
	}

	if (ridx < sor)
		ridx = rotate_reg(sor, rrb_gr, ridx);

	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);

	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
	if (addr >= kbs) {
		/* the register is on the kernel backing store: easy... */
		rnat_addr = ia64_rse_rnat_addr(addr);
		if ((unsigned long) rnat_addr >= sw->ar_bspstore)
			rnat_addr = &sw->ar_rnat;
		nat_mask = 1UL << ia64_rse_slot_num(addr);

		*addr = val;
		if (nat)
			*rnat_addr |=  nat_mask;
		else
			*rnat_addr &= ~nat_mask;
		return;
	}

	if (!user_stack(current, regs)) {
		DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
		return;
	}

	bspstore = (unsigned long *)regs->ar_bspstore;
	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
	addr    = ia64_rse_skip_regs(bsp, ridx);

	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);

	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);

	rnat_addr = ia64_rse_rnat_addr(addr);

	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
	DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
	       (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);

	nat_mask = 1UL << ia64_rse_slot_num(addr);
	if (nat)
		rnats |=  nat_mask;
	else
		rnats &= ~nat_mask;
	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);

	DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
}


static void
get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
{
	struct switch_stack *sw = (struct switch_stack *) regs - 1;
	unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
	unsigned long rnats, nat_mask;
	unsigned long on_kbs;
	long sof = (regs->cr_ifs) & 0x7f;
	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
	long ridx = r1 - 32;

	if (ridx >= sof) {
		/* read of out-of-frame register returns an undefined value; 0 in our case.  */
		DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
		goto fail;
	}

	if (ridx < sor)
		ridx = rotate_reg(sor, rrb_gr, ridx);

	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);

	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
	if (addr >= kbs) {
		/* the register is on the kernel backing store: easy... */
		*val = *addr;
		if (nat) {
			rnat_addr = ia64_rse_rnat_addr(addr);
			if ((unsigned long) rnat_addr >= sw->ar_bspstore)
				rnat_addr = &sw->ar_rnat;
			nat_mask = 1UL << ia64_rse_slot_num(addr);
			*nat = (*rnat_addr & nat_mask) != 0;
		}
		return;
	}

	if (!user_stack(current, regs)) {
		DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
		goto fail;
	}

	bspstore = (unsigned long *)regs->ar_bspstore;
	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
	addr    = ia64_rse_skip_regs(bsp, ridx);

	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);

	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);

	if (nat) {
		rnat_addr = ia64_rse_rnat_addr(addr);
		nat_mask = 1UL << ia64_rse_slot_num(addr);

		DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);

		ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
		*nat = (rnats & nat_mask) != 0;
	}
	return;

  fail:
	*val = 0;
	if (nat)
		*nat = 0;
	return;
}


static void
setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
{
	struct switch_stack *sw = (struct switch_stack *) regs - 1;
	unsigned long addr;
	unsigned long bitmask;
	unsigned long *unat;

	/*
	 * First takes care of stacked registers
	 */
	if (regnum >= IA64_FIRST_STACKED_GR) {
		set_rse_reg(regs, regnum, val, nat);
		return;
	}

	/*
	 * Using r0 as a target raises a General Exception fault which has higher priority
	 * than the Unaligned Reference fault.
	 */

	/*
	 * Now look at registers in [0-31] range and init correct UNAT
	 */
	if (GR_IN_SW(regnum)) {
		addr = (unsigned long)sw;
		unat = &sw->ar_unat;
	} else {
		addr = (unsigned long)regs;
		unat = &sw->caller_unat;
	}
	DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
	       addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
	/*
	 * add offset from base of struct
	 * and do it !
	 */
	addr += GR_OFFS(regnum);

	*(unsigned long *)addr = val;

	/*
	 * We need to clear the corresponding UNAT bit to fully emulate the load
	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
	 */
	bitmask   = 1UL << (addr >> 3 & 0x3f);
	DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
	if (nat) {
		*unat |= bitmask;
	} else {
		*unat &= ~bitmask;
	}
	DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
}

/*
 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
 * range from 32-127, result is in the range from 0-95.
 */
static inline unsigned long
fph_index (struct pt_regs *regs, long regnum)
{
	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
}

static void
setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
{
	struct switch_stack *sw = (struct switch_stack *)regs - 1;
	unsigned long addr;

	/*
	 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
	 * Fault. Thus, when we get here, we know the partition is enabled.
	 * To update f32-f127, there are three choices:
	 *
	 *	(1) save f32-f127 to thread.fph and update the values there
	 *	(2) use a gigantic switch statement to directly access the registers
	 *	(3) generate code on the fly to update the desired register
	 *
	 * For now, we are using approach (1).
	 */
	if (regnum >= IA64_FIRST_ROTATING_FR) {
		ia64_sync_fph(current);
		current->thread.fph[fph_index(regs, regnum)] = *fpval;
	} else {
		/*
		 * pt_regs or switch_stack ?
		 */
		if (FR_IN_SW(regnum)) {
			addr = (unsigned long)sw;
		} else {
			addr = (unsigned long)regs;
		}

		DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));

		addr += FR_OFFS(regnum);
		*(struct ia64_fpreg *)addr = *fpval;

		/*
		 * mark the low partition as being used now
		 *
		 * It is highly unlikely that this bit is not already set, but
		 * let's do it for safety.
		 */
		regs->cr_ipsr |= IA64_PSR_MFL;
	}
}

/*
 * Those 2 inline functions generate the spilled versions of the constant floating point
 * registers which can be used with stfX
 */
static inline void
float_spill_f0 (struct ia64_fpreg *final)
{
	ia64_stf_spill(final, 0);
}

static inline void
float_spill_f1 (struct ia64_fpreg *final)
{
	ia64_stf_spill(final, 1);
}

static void
getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
{
	struct switch_stack *sw = (struct switch_stack *) regs - 1;
	unsigned long addr;

	/*
	 * From EAS-2.5: FPDisableFault has higher priority than
	 * Unaligned Fault. Thus, when we get here, we know the partition is
	 * enabled.
	 *
	 * When regnum > 31, the register is still live and we need to force a save
	 * to current->thread.fph to get access to it.  See discussion in setfpreg()
	 * for reasons and other ways of doing this.
	 */
	if (regnum >= IA64_FIRST_ROTATING_FR) {
		ia64_flush_fph(current);
		*fpval = current->thread.fph[fph_index(regs, regnum)];
	} else {
		/*
		 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
		 * not saved, we must generate their spilled form on the fly
		 */
		switch(regnum) {
		case 0:
			float_spill_f0(fpval);
			break;
		case 1:
			float_spill_f1(fpval);
			break;
		default:
			/*
			 * pt_regs or switch_stack ?
			 */
			addr =  FR_IN_SW(regnum) ? (unsigned long)sw
						 : (unsigned long)regs;

			DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
			       FR_IN_SW(regnum), addr, FR_OFFS(regnum));

			addr  += FR_OFFS(regnum);
			*fpval = *(struct ia64_fpreg *)addr;
		}
	}
}


static void
getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
{
	struct switch_stack *sw = (struct switch_stack *) regs - 1;
	unsigned long addr, *unat;

	if (regnum >= IA64_FIRST_STACKED_GR) {
		get_rse_reg(regs, regnum, val, nat);
		return;
	}

	/*
	 * take care of r0 (read-only always evaluate to 0)
	 */
	if (regnum == 0) {
		*val = 0;
		if (nat)
			*nat = 0;
		return;
	}

	/*
	 * Now look at registers in [0-31] range and init correct UNAT
	 */
	if (GR_IN_SW(regnum)) {
		addr = (unsigned long)sw;
		unat = &sw->ar_unat;
	} else {
		addr = (unsigned long)regs;
		unat = &sw->caller_unat;
	}

	DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));

	addr += GR_OFFS(regnum);

	*val  = *(unsigned long *)addr;

	/*
	 * do it only when requested
	 */
	if (nat)
		*nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
}

static void
emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
{
	/*
	 * IMPORTANT:
	 * Given the way we handle unaligned speculative loads, we should
	 * not get to this point in the code but we keep this sanity check,
	 * just in case.
	 */
	if (ld.x6_op == 1 || ld.x6_op == 3) {
		printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
		if (die_if_kernel("unaligned reference on speculative load with register update\n",
				  regs, 30))
			return;
	}


	/*
	 * at this point, we know that the base register to update is valid i.e.,
	 * it's not r0
	 */
	if (type == UPD_IMMEDIATE) {
		unsigned long imm;

		/*
		 * Load +Imm: ldXZ r1=[r3],imm(9)
		 *
		 *
		 * form imm9: [13:19] contain the first 7 bits
		 */
		imm = ld.x << 7 | ld.imm;

		/*
		 * sign extend (1+8bits) if m set
		 */
		if (ld.m) imm |= SIGN_EXT9;

		/*
		 * ifa == r3 and we know that the NaT bit on r3 was clear so
		 * we can directly use ifa.
		 */
		ifa += imm;

		setreg(ld.r3, ifa, 0, regs);

		DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);

	} else if (ld.m) {
		unsigned long r2;
		int nat_r2;

		/*
		 * Load +Reg Opcode: ldXZ r1=[r3],r2
		 *
		 * Note: that we update r3 even in the case of ldfX.a
		 * (where the load does not happen)
		 *
		 * The way the load algorithm works, we know that r3 does not
		 * have its NaT bit set (would have gotten NaT consumption
		 * before getting the unaligned fault). So we can use ifa
		 * which equals r3 at this point.
		 *
		 * IMPORTANT:
		 * The above statement holds ONLY because we know that we
		 * never reach this code when trying to do a ldX.s.
		 * If we ever make it to here on an ldfX.s then
		 */
		getreg(ld.imm, &r2, &nat_r2, regs);

		ifa += r2;

		/*
		 * propagate Nat r2 -> r3
		 */
		setreg(ld.r3, ifa, nat_r2, regs);

		DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
	}
}


static int
emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
{
	unsigned int len = 1 << ld.x6_sz;
	unsigned long val = 0;

	/*
	 * r0, as target, doesn't need to be checked because Illegal Instruction
	 * faults have higher priority than unaligned faults.
	 *
	 * r0 cannot be found as the base as it would never generate an
	 * unaligned reference.
	 */

	/*
	 * ldX.a we will emulate load and also invalidate the ALAT entry.
	 * See comment below for explanation on how we handle ldX.a
	 */

	if (len != 2 && len != 4 && len != 8) {
		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
		return -1;
	}
	/* this assumes little-endian byte-order: */
	if (copy_from_user(&val, (void __user *) ifa, len))
		return -1;
	setreg(ld.r1, val, 0, regs);

	/*
	 * check for updates on any kind of loads
	 */
	if (ld.op == 0x5 || ld.m)
		emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);

	/*
	 * handling of various loads (based on EAS2.4):
	 *
	 * ldX.acq (ordered load):
	 *	- acquire semantics would have been used, so force fence instead.
	 *
	 * ldX.c.clr (check load and clear):
	 *	- if we get to this handler, it's because the entry was not in the ALAT.
	 *	  Therefore the operation reverts to a normal load
	 *
	 * ldX.c.nc (check load no clear):
	 *	- same as previous one
	 *
	 * ldX.c.clr.acq (ordered check load and clear):
	 *	- same as above for c.clr part. The load needs to have acquire semantics. So
	 *	  we use the fence semantics which is stronger and thus ensures correctness.
	 *
	 * ldX.a (advanced load):
	 *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
	 *	  address doesn't match requested size alignment. This means that we would
	 *	  possibly need more than one load to get the result.
	 *
	 *	  The load part can be handled just like a normal load, however the difficult
	 *	  part is to get the right thing into the ALAT. The critical piece of information
	 *	  in the base address of the load & size. To do that, a ld.a must be executed,
	 *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
	 *	  if we use the same target register, we will be okay for the check.a instruction.
	 *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
	 *	  which would overlap within [r3,r3+X] (the size of the load was store in the
	 *	  ALAT). If such an entry is found the entry is invalidated. But this is not good
	 *	  enough, take the following example:
	 *		r3=3
	 *		ld4.a r1=[r3]
	 *
	 *	  Could be emulated by doing:
	 *		ld1.a r1=[r3],1
	 *		store to temporary;
	 *		ld1.a r1=[r3],1
	 *		store & shift to temporary;
	 *		ld1.a r1=[r3],1
	 *		store & shift to temporary;
	 *		ld1.a r1=[r3]
	 *		store & shift to temporary;
	 *		r1=temporary
	 *
	 *	  So in this case, you would get the right value is r1 but the wrong info in
	 *	  the ALAT.  Notice that you could do it in reverse to finish with address 3
	 *	  but you would still get the size wrong.  To get the size right, one needs to
	 *	  execute exactly the same kind of load. You could do it from a aligned
	 *	  temporary location, but you would get the address wrong.
	 *
	 *	  So no matter what, it is not possible to emulate an advanced load
	 *	  correctly. But is that really critical ?
	 *
	 *	  We will always convert ld.a into a normal load with ALAT invalidated.  This
	 *	  will enable compiler to do optimization where certain code path after ld.a
	 *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
	 *
	 *	  If there is a store after the advanced load, one must either do a ld.c.* or
	 *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
	 *	  entry found in ALAT), and that's perfectly ok because:
	 *
	 *		- ld.c.*, if the entry is not present a  normal load is executed
	 *		- chk.a.*, if the entry is not present, execution jumps to recovery code
	 *
	 *	  In either case, the load can be potentially retried in another form.
	 *
	 *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
	 *	  up a stale entry later). The register base update MUST also be performed.
	 */

	/*
	 * when the load has the .acq completer then
	 * use ordering fence.
	 */
	if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
		mb();

	/*
	 * invalidate ALAT entry in case of advanced load
	 */
	if (ld.x6_op == 0x2)
		invala_gr(ld.r1);

	return 0;
}

static int
emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
{
	unsigned long r2;
	unsigned int len = 1 << ld.x6_sz;

	/*
	 * if we get to this handler, Nat bits on both r3 and r2 have already
	 * been checked. so we don't need to do it
	 *
	 * extract the value to be stored
	 */
	getreg(ld.imm, &r2, NULL, regs);

	/*
	 * we rely on the macros in unaligned.h for now i.e.,
	 * we let the compiler figure out how to read memory gracefully.
	 *
	 * We need this switch/case because the way the inline function
	 * works. The code is optimized by the compiler and looks like
	 * a single switch/case.
	 */
	DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);

	if (len != 2 && len != 4 && len != 8) {
		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
		return -1;
	}

	/* this assumes little-endian byte-order: */
	if (copy_to_user((void __user *) ifa, &r2, len))
		return -1;

	/*
	 * stX [r3]=r2,imm(9)
	 *
	 * NOTE:
	 * ld.r3 can never be r0, because r0 would not generate an
	 * unaligned access.
	 */
	if (ld.op == 0x5) {
		unsigned long imm;

		/*
		 * form imm9: [12:6] contain first 7bits
		 */
		imm = ld.x << 7 | ld.r1;
		/*
		 * sign extend (8bits) if m set
		 */
		if (ld.m) imm |= SIGN_EXT9;
		/*
		 * ifa == r3 (NaT is necessarily cleared)
		 */
		ifa += imm;

		DPRINT("imm=%lx r3=%lx\n", imm, ifa);

		setreg(ld.r3, ifa, 0, regs);
	}
	/*
	 * we don't have alat_invalidate_multiple() so we need
	 * to do the complete flush :-<<
	 */
	ia64_invala();

	/*
	 * stX.rel: use fence instead of release
	 */
	if (ld.x6_op == 0xd)
		mb();

	return 0;
}

/*
 * floating point operations sizes in bytes
 */
static const unsigned char float_fsz[4]={
	10, /* extended precision (e) */
	8,  /* integer (8)            */
	4,  /* single precision (s)   */
	8   /* double precision (d)   */
};

static inline void
mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldfe(6, init);
	ia64_stop();
	ia64_stf_spill(final, 6);
}

static inline void
mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldf8(6, init);
	ia64_stop();
	ia64_stf_spill(final, 6);
}

static inline void
mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldfs(6, init);
	ia64_stop();
	ia64_stf_spill(final, 6);
}

static inline void
mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldfd(6, init);
	ia64_stop();
	ia64_stf_spill(final, 6);
}

static inline void
float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldf_fill(6, init);
	ia64_stop();
	ia64_stfe(final, 6);
}

static inline void
float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldf_fill(6, init);
	ia64_stop();
	ia64_stf8(final, 6);
}

static inline void
float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldf_fill(6, init);
	ia64_stop();
	ia64_stfs(final, 6);
}

static inline void
float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
{
	ia64_ldf_fill(6, init);
	ia64_stop();
	ia64_stfd(final, 6);
}

static int
emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
{
	struct ia64_fpreg fpr_init[2];
	struct ia64_fpreg fpr_final[2];
	unsigned long len = float_fsz[ld.x6_sz];

	/*
	 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
	 * higher priority than unaligned faults.
	 *
	 * r0 cannot be found as the base as it would never generate an unaligned
	 * reference.
	 */

	/*
	 * make sure we get clean buffers
	 */
	memset(&fpr_init, 0, sizeof(fpr_init));
	memset(&fpr_final, 0, sizeof(fpr_final));

	/*
	 * ldfpX.a: we don't try to emulate anything but we must
	 * invalidate the ALAT entry and execute updates, if any.
	 */
	if (ld.x6_op != 0x2) {
		/*
		 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
		 * instruction:
		 */
		if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
		    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
			return -1;

		DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
		DDUMP("frp_init =", &fpr_init, 2*len);
		/*
		 * XXX fixme
		 * Could optimize inlines by using ldfpX & 2 spills
		 */
		switch( ld.x6_sz ) {
			case 0:
				mem2float_extended(&fpr_init[0], &fpr_final[0]);
				mem2float_extended(&fpr_init[1], &fpr_final[1]);
				break;
			case 1:
				mem2float_integer(&fpr_init[0], &fpr_final[0]);
				mem2float_integer(&fpr_init[1], &fpr_final[1]);
				break;
			case 2:
				mem2float_single(&fpr_init[0], &fpr_final[0]);
				mem2float_single(&fpr_init[1], &fpr_final[1]);
				break;
			case 3:
				mem2float_double(&fpr_init[0], &fpr_final[0]);
				mem2float_double(&fpr_init[1], &fpr_final[1]);
				break;
		}
		DDUMP("fpr_final =", &fpr_final, 2*len);
		/*
		 * XXX fixme
		 *
		 * A possible optimization would be to drop fpr_final and directly
		 * use the storage from the saved context i.e., the actual final
		 * destination (pt_regs, switch_stack or thread structure).
		 */
		setfpreg(ld.r1, &fpr_final[0], regs);
		setfpreg(ld.imm, &fpr_final[1], regs);
	}

	/*
	 * Check for updates: only immediate updates are available for this
	 * instruction.
	 */
	if (ld.m) {
		/*
		 * the immediate is implicit given the ldsz of the operation:
		 * single: 8 (2x4) and for  all others it's 16 (2x8)
		 */
		ifa += len<<1;

		/*
		 * IMPORTANT:
		 * the fact that we force the NaT of r3 to zero is ONLY valid
		 * as long as we don't come here with a ldfpX.s.
		 * For this reason we keep this sanity check
		 */
		if (ld.x6_op == 1 || ld.x6_op == 3)
			printk(KERN_ERR "%s: register update on speculative load pair, error\n",
			       __func__);

		setreg(ld.r3, ifa, 0, regs);
	}

	/*
	 * Invalidate ALAT entries, if any, for both registers.
	 */
	if (ld.x6_op == 0x2) {
		invala_fr(ld.r1);
		invala_fr(ld.imm);
	}
	return 0;
}


static int
emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
{
	struct ia64_fpreg fpr_init;
	struct ia64_fpreg fpr_final;
	unsigned long len = float_fsz[ld.x6_sz];

	/*
	 * fr0 & fr1 don't need to be checked because Illegal Instruction
	 * faults have higher priority than unaligned faults.
	 *
	 * r0 cannot be found as the base as it would never generate an
	 * unaligned reference.
	 */

	/*
	 * make sure we get clean buffers
	 */
	memset(&fpr_init,0, sizeof(fpr_init));
	memset(&fpr_final,0, sizeof(fpr_final));

	/*
	 * ldfX.a we don't try to emulate anything but we must
	 * invalidate the ALAT entry.
	 * See comments in ldX for descriptions on how the various loads are handled.
	 */
	if (ld.x6_op != 0x2) {
		if (copy_from_user(&fpr_init, (void __user *) ifa, len))
			return -1;

		DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
		DDUMP("fpr_init =", &fpr_init, len);
		/*
		 * we only do something for x6_op={0,8,9}
		 */
		switch( ld.x6_sz ) {
			case 0:
				mem2float_extended(&fpr_init, &fpr_final);
				break;
			case 1:
				mem2float_integer(&fpr_init, &fpr_final);
				break;
			case 2:
				mem2float_single(&fpr_init, &fpr_final);
				break;
			case 3:
				mem2float_double(&fpr_init, &fpr_final);
				break;
		}
		DDUMP("fpr_final =", &fpr_final, len);
		/*
		 * XXX fixme
		 *
		 * A possible optimization would be to drop fpr_final and directly
		 * use the storage from the saved context i.e., the actual final
		 * destination (pt_regs, switch_stack or thread structure).
		 */
		setfpreg(ld.r1, &fpr_final, regs);
	}

	/*
	 * check for updates on any loads
	 */
	if (ld.op == 0x7 || ld.m)
		emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);

	/*
	 * invalidate ALAT entry in case of advanced floating point loads
	 */
	if (ld.x6_op == 0x2)
		invala_fr(ld.r1);

	return 0;
}


static int
emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
{
	struct ia64_fpreg fpr_init;
	struct ia64_fpreg fpr_final;
	unsigned long len = float_fsz[ld.x6_sz];

	/*
	 * make sure we get clean buffers
	 */
	memset(&fpr_init,0, sizeof(fpr_init));
	memset(&fpr_final,0, sizeof(fpr_final));

	/*
	 * if we get to this handler, Nat bits on both r3 and r2 have already
	 * been checked. so we don't need to do it
	 *
	 * extract the value to be stored
	 */
	getfpreg(ld.imm, &fpr_init, regs);
	/*
	 * during this step, we extract the spilled registers from the saved
	 * context i.e., we refill. Then we store (no spill) to temporary
	 * aligned location
	 */
	switch( ld.x6_sz ) {
		case 0:
			float2mem_extended(&fpr_init, &fpr_final);
			break;
		case 1:
			float2mem_integer(&fpr_init, &fpr_final);
			break;
		case 2:
			float2mem_single(&fpr_init, &fpr_final);
			break;
		case 3:
			float2mem_double(&fpr_init, &fpr_final);
			break;
	}
	DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
	DDUMP("fpr_init =", &fpr_init, len);
	DDUMP("fpr_final =", &fpr_final, len);

	if (copy_to_user((void __user *) ifa, &fpr_final, len))
		return -1;

	/*
	 * stfX [r3]=r2,imm(9)
	 *
	 * NOTE:
	 * ld.r3 can never be r0, because r0 would not generate an
	 * unaligned access.
	 */
	if (ld.op == 0x7) {
		unsigned long imm;

		/*
		 * form imm9: [12:6] contain first 7bits
		 */
		imm = ld.x << 7 | ld.r1;
		/*
		 * sign extend (8bits) if m set
		 */
		if (ld.m)
			imm |= SIGN_EXT9;
		/*
		 * ifa == r3 (NaT is necessarily cleared)
		 */
		ifa += imm;

		DPRINT("imm=%lx r3=%lx\n", imm, ifa);

		setreg(ld.r3, ifa, 0, regs);
	}
	/*
	 * we don't have alat_invalidate_multiple() so we need
	 * to do the complete flush :-<<
	 */
	ia64_invala();

	return 0;
}

/*
 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
 * eventually fix the program.  However, we don't want to do that for every access so we
 * pace it with jiffies.  This isn't really MP-safe, but it doesn't really have to be
 * either...
 */
static int
within_logging_rate_limit (void)
{
	static unsigned long count, last_time;

	if (jiffies - last_time > 5*HZ)
		count = 0;
	if (count < 5) {
		last_time = jiffies;
		count++;
		return 1;
	}
	return 0;

}

void
ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
{
	struct ia64_psr *ipsr = ia64_psr(regs);
	mm_segment_t old_fs = get_fs();
	unsigned long bundle[2];
	unsigned long opcode;
	struct siginfo si;
	const struct exception_table_entry *eh = NULL;
	union {
		unsigned long l;
		load_store_t insn;
	} u;
	int ret = -1;

	if (ia64_psr(regs)->be) {
		/* we don't support big-endian accesses */
		if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
			return;
		goto force_sigbus;
	}

	/*
	 * Treat kernel accesses for which there is an exception handler entry the same as
	 * user-level unaligned accesses.  Otherwise, a clever program could trick this
	 * handler into reading an arbitrary kernel addresses...
	 */
	if (!user_mode(regs))
		eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
	if (user_mode(regs) || eh) {
		if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
			goto force_sigbus;

		if (!no_unaligned_warning &&
		    !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
		    within_logging_rate_limit())
		{
			char buf[200];	/* comm[] is at most 16 bytes... */
			size_t len;

			len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
				      "ip=0x%016lx\n\r", current->comm,
				      task_pid_nr(current),
				      ifa, regs->cr_iip + ipsr->ri);
			/*
			 * Don't call tty_write_message() if we're in the kernel; we might
			 * be holding locks...
			 */
			if (user_mode(regs))
				tty_write_message(current->signal->tty, buf);
			buf[len-1] = '\0';	/* drop '\r' */
			/* watch for command names containing %s */
			printk(KERN_WARNING "%s", buf);
		} else {
			if (no_unaligned_warning && !noprint_warning) {
				noprint_warning = 1;
				printk(KERN_WARNING "%s(%d) encountered an "
				       "unaligned exception which required\n"
				       "kernel assistance, which degrades "
				       "the performance of the application.\n"
				       "Unaligned exception warnings have "
				       "been disabled by the system "
				       "administrator\n"
				       "echo 0 > /proc/sys/kernel/ignore-"
				       "unaligned-usertrap to re-enable\n",
				       current->comm, task_pid_nr(current));
			}
		}
	} else {
		if (within_logging_rate_limit())
			printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
			       ifa, regs->cr_iip + ipsr->ri);
		set_fs(KERNEL_DS);
	}

	DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
	       regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);

	if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
		goto failure;

	/*
	 * extract the instruction from the bundle given the slot number
	 */
	switch (ipsr->ri) {
	      case 0: u.l = (bundle[0] >>  5); break;
	      case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
	      case 2: u.l = (bundle[1] >> 23); break;
	}
	opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;

	DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
	       "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
	       u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);

	/*
	 * IMPORTANT:
	 * Notice that the switch statement DOES not cover all possible instructions
	 * that DO generate unaligned references. This is made on purpose because for some
	 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
	 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
	 * the program will get a signal and die:
	 *
	 *	load/store:
	 *		- ldX.spill
	 *		- stX.spill
	 *	Reason: RNATs are based on addresses
	 *		- ld16
	 *		- st16
	 *	Reason: ld16 and st16 are supposed to occur in a single
	 *		memory op
	 *
	 *	synchronization:
	 *		- cmpxchg
	 *		- fetchadd
	 *		- xchg
	 *	Reason: ATOMIC operations cannot be emulated properly using multiple
	 *	        instructions.
	 *
	 *	speculative loads:
	 *		- ldX.sZ
	 *	Reason: side effects, code must be ready to deal with failure so simpler
	 *		to let the load fail.
	 * ---------------------------------------------------------------------------------
	 * XXX fixme
	 *
	 * I would like to get rid of this switch case and do something
	 * more elegant.
	 */
	switch (opcode) {
	      case LDS_OP:
	      case LDSA_OP:
		if (u.insn.x)
			/* oops, really a semaphore op (cmpxchg, etc) */
			goto failure;
		/* no break */
	      case LDS_IMM_OP:
	      case LDSA_IMM_OP:
	      case LDFS_OP:
	      case LDFSA_OP:
	      case LDFS_IMM_OP:
		/*
		 * The instruction will be retried with deferred exceptions turned on, and
		 * we should get Nat bit installed
		 *
		 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
		 * are actually executed even though the operation failed. So we don't
		 * need to take care of this.
		 */
		DPRINT("forcing PSR_ED\n");
		regs->cr_ipsr |= IA64_PSR_ED;
		goto done;

	      case LD_OP:
	      case LDA_OP:
	      case LDBIAS_OP:
	      case LDACQ_OP:
	      case LDCCLR_OP:
	      case LDCNC_OP:
	      case LDCCLRACQ_OP:
		if (u.insn.x)
			/* oops, really a semaphore op (cmpxchg, etc) */
			goto failure;
		/* no break */
	      case LD_IMM_OP:
	      case LDA_IMM_OP:
	      case LDBIAS_IMM_OP:
	      case LDACQ_IMM_OP:
	      case LDCCLR_IMM_OP:
	      case LDCNC_IMM_OP:
	      case LDCCLRACQ_IMM_OP:
		ret = emulate_load_int(ifa, u.insn, regs);
		break;

	      case ST_OP:
	      case STREL_OP:
		if (u.insn.x)
			/* oops, really a semaphore op (cmpxchg, etc) */
			goto failure;
		/* no break */
	      case ST_IMM_OP:
	      case STREL_IMM_OP:
		ret = emulate_store_int(ifa, u.insn, regs);
		break;

	      case LDF_OP:
	      case LDFA_OP:
	      case LDFCCLR_OP:
	      case LDFCNC_OP:
		if (u.insn.x)
			ret = emulate_load_floatpair(ifa, u.insn, regs);
		else
			ret = emulate_load_float(ifa, u.insn, regs);
		break;

	      case LDF_IMM_OP:
	      case LDFA_IMM_OP:
	      case LDFCCLR_IMM_OP:
	      case LDFCNC_IMM_OP:
		ret = emulate_load_float(ifa, u.insn, regs);
		break;

	      case STF_OP:
	      case STF_IMM_OP:
		ret = emulate_store_float(ifa, u.insn, regs);
		break;

	      default:
		goto failure;
	}
	DPRINT("ret=%d\n", ret);
	if (ret)
		goto failure;

	if (ipsr->ri == 2)
		/*
		 * given today's architecture this case is not likely to happen because a
		 * memory access instruction (M) can never be in the last slot of a
		 * bundle. But let's keep it for now.
		 */
		regs->cr_iip += 16;
	ipsr->ri = (ipsr->ri + 1) & 0x3;

	DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
  done:
	set_fs(old_fs);		/* restore original address limit */
	return;

  failure:
	/* something went wrong... */
	if (!user_mode(regs)) {
		if (eh) {
			ia64_handle_exception(regs, eh);
			goto done;
		}
		if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
			return;
		/* NOT_REACHED */
	}
  force_sigbus:
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_code = BUS_ADRALN;
	si.si_addr = (void __user *) ifa;
	si.si_flags = 0;
	si.si_isr = 0;
	si.si_imm = 0;
	force_sig_info(SIGBUS, &si, current);
	goto done;
}