Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/*
 *  arch/mips/kernel/gdb-stub.c
 *
 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
 *
 *  Contributed by HP Systems
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
 *
 *  Copyright (C) 1995 Andreas Busse
 *
 *  Copyright (C) 2003 MontaVista Software Inc.
 *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 */

/*
 *  To enable debugger support, two things need to happen.  One, a
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 *  simulates a breakpoint by executing a BREAK instruction.
 *
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
 *							   baud rate
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 *
 *  ==============
 *  MORE EXAMPLES:
 *  ==============
 *
 *  For reference -- the following are the steps that one
 *  company took (RidgeRun Inc) to get remote gdb debugging
 *  going. In this scenario the host machine was a PC and the
 *  target platform was a Galileo EVB64120A MIPS evaluation
 *  board.
 *
 *  Step 1:
 *  First download gdb-5.0.tar.gz from the internet.
 *  and then build/install the package.
 *
 *  Example:
 *    $ tar zxf gdb-5.0.tar.gz
 *    $ cd gdb-5.0
 *    $ ./configure --target=mips-linux-elf
 *    $ make
 *    $ install
 *    $ which mips-linux-elf-gdb
 *    /usr/local/bin/mips-linux-elf-gdb
 *
 *  Step 2:
 *  Configure linux for remote debugging and build it.
 *
 *  Example:
 *    $ cd ~/linux
 *    $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
 *    $ make
 *
 *  Step 3:
 *  Download the kernel to the remote target and start
 *  the kernel running. It will promptly halt and wait
 *  for the host gdb session to connect. It does this
 *  since the "Kernel Hacking" option has defined
 *  CONFIG_KGDB which in turn enables your calls
 *  to:
 *     set_debug_traps();
 *     breakpoint();
 *
 *  Step 4:
 *  Start the gdb session on the host.
 *
 *  Example:
 *    $ mips-linux-elf-gdb vmlinux
 *    (gdb) set remotebaud 115200
 *    (gdb) target remote /dev/ttyS1
 *    ...at this point you are connected to
 *       the remote target and can use gdb
 *       in the normal fasion. Setting
 *       breakpoints, single stepping,
 *       printing variables, etc.
 */
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/reboot.h>

#include <asm/asm.h>
#include <asm/cacheflush.h>
#include <asm/mipsregs.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/gdb-stub.h>
#include <asm/inst.h>
#include <asm/smp.h>

/*
 * external low-level support routines
 */

extern int putDebugChar(char c);    /* write a single character      */
extern char getDebugChar(void);     /* read and return a single char */
extern void trap_low(void);

/*
 * breakpoint and test functions
 */
extern void breakpoint(void);
extern void breakinst(void);
extern void async_breakpoint(void);
extern void async_breakinst(void);
extern void adel(void);

/*
 * local prototypes
 */

static void getpacket(char *buffer);
static void putpacket(char *buffer);
static int computeSignal(int tt);
static int hex(unsigned char ch);
static int hexToInt(char **ptr, int *intValue);
static int hexToLong(char **ptr, long *longValue);
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
void handle_exception(struct gdb_regs *regs);

int kgdb_enabled;

/*
 * spin locks for smp case
 */
static DEFINE_SPINLOCK(kgdb_lock);
static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
	[0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED,
};

/*
 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
 * at least NUMREGBYTES*2 are needed for register packets
 */
#define BUFMAX 2048

static char input_buffer[BUFMAX];
static char output_buffer[BUFMAX];
static int initialized;	/* !0 means we've been initialized */
static int kgdb_started;
static const char hexchars[]="0123456789abcdef";

/* Used to prevent crashes in memory access.  Note that they'll crash anyway if
   we haven't set up fault handlers yet... */
int kgdb_read_byte(unsigned char *address, unsigned char *dest);
int kgdb_write_byte(unsigned char val, unsigned char *dest);

/*
 * Convert ch from a hex digit to an int
 */
static int hex(unsigned char ch)
{
	if (ch >= 'a' && ch <= 'f')
		return ch-'a'+10;
	if (ch >= '0' && ch <= '9')
		return ch-'0';
	if (ch >= 'A' && ch <= 'F')
		return ch-'A'+10;
	return -1;
}

/*
 * scan for the sequence $<data>#<checksum>
 */
static void getpacket(char *buffer)
{
	unsigned char checksum;
	unsigned char xmitcsum;
	int i;
	int count;
	unsigned char ch;

	do {
		/*
		 * wait around for the start character,
		 * ignore all other characters
		 */
		while ((ch = (getDebugChar() & 0x7f)) != '$') ;

		checksum = 0;
		xmitcsum = -1;
		count = 0;

		/*
		 * now, read until a # or end of buffer is found
		 */
		while (count < BUFMAX) {
			ch = getDebugChar();
			if (ch == '#')
				break;
			checksum = checksum + ch;
			buffer[count] = ch;
			count = count + 1;
		}

		if (count >= BUFMAX)
			continue;

		buffer[count] = 0;

		if (ch == '#') {
			xmitcsum = hex(getDebugChar() & 0x7f) << 4;
			xmitcsum |= hex(getDebugChar() & 0x7f);

			if (checksum != xmitcsum)
				putDebugChar('-');	/* failed checksum */
			else {
				putDebugChar('+'); /* successful transfer */

				/*
				 * if a sequence char is present,
				 * reply the sequence ID
				 */
				if (buffer[2] == ':') {
					putDebugChar(buffer[0]);
					putDebugChar(buffer[1]);

					/*
					 * remove sequence chars from buffer
					 */
					count = strlen(buffer);
					for (i=3; i <= count; i++)
						buffer[i-3] = buffer[i];
				}
			}
		}
	}
	while (checksum != xmitcsum);
}

/*
 * send the packet in buffer.
 */
static void putpacket(char *buffer)
{
	unsigned char checksum;
	int count;
	unsigned char ch;

	/*
	 * $<packet info>#<checksum>.
	 */

	do {
		putDebugChar('$');
		checksum = 0;
		count = 0;

		while ((ch = buffer[count]) != 0) {
			if (!(putDebugChar(ch)))
				return;
			checksum += ch;
			count += 1;
		}

		putDebugChar('#');
		putDebugChar(hexchars[checksum >> 4]);
		putDebugChar(hexchars[checksum & 0xf]);

	}
	while ((getDebugChar() & 0x7f) != '+');
}


/*
 * Convert the memory pointed to by mem into hex, placing result in buf.
 * Return a pointer to the last char put in buf (null), in case of mem fault,
 * return 0.
 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
 * not used.
 */
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
{
	unsigned char ch;

	while (count-- > 0) {
		if (kgdb_read_byte(mem++, &ch) != 0)
			return 0;
		*buf++ = hexchars[ch >> 4];
		*buf++ = hexchars[ch & 0xf];
	}

	*buf = 0;

	return buf;
}

/*
 * convert the hex array pointed to by buf into binary to be placed in mem
 * return a pointer to the character AFTER the last byte written
 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
 * not used.
 */
static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
{
	int i;
	unsigned char ch;

	for (i=0; i<count; i++)
	{
		if (binary) {
			ch = *buf++;
			if (ch == 0x7d)
				ch = 0x20 ^ *buf++;
		}
		else {
			ch = hex(*buf++) << 4;
			ch |= hex(*buf++);
		}
		if (kgdb_write_byte(ch, mem++) != 0)
			return 0;
	}

	return mem;
}

/*
 * This table contains the mapping between SPARC hardware trap types, and
 * signals, which are primarily what GDB understands.  It also indicates
 * which hardware traps we need to commandeer when initializing the stub.
 */
static struct hard_trap_info {
	unsigned char tt;		/* Trap type code for MIPS R3xxx and R4xxx */
	unsigned char signo;		/* Signal that we map this trap into */
} hard_trap_info[] = {
	{ 6, SIGBUS },			/* instruction bus error */
	{ 7, SIGBUS },			/* data bus error */
	{ 9, SIGTRAP },			/* break */
	{ 10, SIGILL },			/* reserved instruction */
/*	{ 11, SIGILL },		*/	/* CPU unusable */
	{ 12, SIGFPE },			/* overflow */
	{ 13, SIGTRAP },		/* trap */
	{ 14, SIGSEGV },		/* virtual instruction cache coherency */
	{ 15, SIGFPE },			/* floating point exception */
	{ 23, SIGSEGV },		/* watch */
	{ 31, SIGSEGV },		/* virtual data cache coherency */
	{ 0, 0}				/* Must be last */
};

/* Save the normal trap handlers for user-mode traps. */
void *saved_vectors[32];

/*
 * Set up exception handlers for tracing and breakpoints
 */
void set_debug_traps(void)
{
	struct hard_trap_info *ht;
	unsigned long flags;
	unsigned char c;

	local_irq_save(flags);
	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
		saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);

	putDebugChar('+'); /* 'hello world' */
	/*
	 * In case GDB is started before us, ack any packets
	 * (presumably "$?#xx") sitting there.
	 */
	while((c = getDebugChar()) != '$');
	while((c = getDebugChar()) != '#');
	c = getDebugChar(); /* eat first csum byte */
	c = getDebugChar(); /* eat second csum byte */
	putDebugChar('+'); /* ack it */

	initialized = 1;
	local_irq_restore(flags);
}

void restore_debug_traps(void)
{
	struct hard_trap_info *ht;
	unsigned long flags;

	local_irq_save(flags);
	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
		set_except_vector(ht->tt, saved_vectors[ht->tt]);
	local_irq_restore(flags);
}

/*
 * Convert the MIPS hardware trap type code to a Unix signal number.
 */
static int computeSignal(int tt)
{
	struct hard_trap_info *ht;

	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
		if (ht->tt == tt)
			return ht->signo;

	return SIGHUP;		/* default for things we don't know about */
}

/*
 * While we find nice hex chars, build an int.
 * Return number of chars processed.
 */
static int hexToInt(char **ptr, int *intValue)
{
	int numChars = 0;
	int hexValue;

	*intValue = 0;

	while (**ptr) {
		hexValue = hex(**ptr);
		if (hexValue < 0)
			break;

		*intValue = (*intValue << 4) | hexValue;
		numChars ++;

		(*ptr)++;
	}

	return (numChars);
}

static int hexToLong(char **ptr, long *longValue)
{
	int numChars = 0;
	int hexValue;

	*longValue = 0;

	while (**ptr) {
		hexValue = hex(**ptr);
		if (hexValue < 0)
			break;

		*longValue = (*longValue << 4) | hexValue;
		numChars ++;

		(*ptr)++;
	}

	return numChars;
}


#if 0
/*
 * Print registers (on target console)
 * Used only to debug the stub...
 */
void show_gdbregs(struct gdb_regs * regs)
{
	/*
	 * Saved main processor registers
	 */
	printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
	       regs->reg0, regs->reg1, regs->reg2, regs->reg3,
               regs->reg4, regs->reg5, regs->reg6, regs->reg7);
	printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
	       regs->reg8, regs->reg9, regs->reg10, regs->reg11,
               regs->reg12, regs->reg13, regs->reg14, regs->reg15);
	printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
	       regs->reg16, regs->reg17, regs->reg18, regs->reg19,
               regs->reg20, regs->reg21, regs->reg22, regs->reg23);
	printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
	       regs->reg24, regs->reg25, regs->reg26, regs->reg27,
	       regs->reg28, regs->reg29, regs->reg30, regs->reg31);

	/*
	 * Saved cp0 registers
	 */
	printk("epc  : %08lx\nStatus: %08lx\nCause : %08lx\n",
	       regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
}
#endif /* dead code */

/*
 * We single-step by setting breakpoints. When an exception
 * is handled, we need to restore the instructions hoisted
 * when the breakpoints were set.
 *
 * This is where we save the original instructions.
 */
static struct gdb_bp_save {
	unsigned long addr;
	unsigned int val;
} step_bp[2];

#define BP 0x0000000d  /* break opcode */

/*
 * Set breakpoint instructions for single stepping.
 */
static void single_step(struct gdb_regs *regs)
{
	union mips_instruction insn;
	unsigned long targ;
	int is_branch, is_cond, i;

	targ = regs->cp0_epc;
	insn.word = *(unsigned int *)targ;
	is_branch = is_cond = 0;

	switch (insn.i_format.opcode) {
	/*
	 * jr and jalr are in r_format format.
	 */
	case spec_op:
		switch (insn.r_format.func) {
		case jalr_op:
		case jr_op:
			targ = *(&regs->reg0 + insn.r_format.rs);
			is_branch = 1;
			break;
		}
		break;

	/*
	 * This group contains:
	 * bltz_op, bgez_op, bltzl_op, bgezl_op,
	 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
	 */
	case bcond_op:
		is_branch = is_cond = 1;
		targ += 4 + (insn.i_format.simmediate << 2);
		break;

	/*
	 * These are unconditional and in j_format.
	 */
	case jal_op:
	case j_op:
		is_branch = 1;
		targ += 4;
		targ >>= 28;
		targ <<= 28;
		targ |= (insn.j_format.target << 2);
		break;

	/*
	 * These are conditional.
	 */
	case beq_op:
	case beql_op:
	case bne_op:
	case bnel_op:
	case blez_op:
	case blezl_op:
	case bgtz_op:
	case bgtzl_op:
	case cop0_op:
	case cop1_op:
	case cop2_op:
	case cop1x_op:
		is_branch = is_cond = 1;
		targ += 4 + (insn.i_format.simmediate << 2);
		break;
	}

	if (is_branch) {
		i = 0;
		if (is_cond && targ != (regs->cp0_epc + 8)) {
			step_bp[i].addr = regs->cp0_epc + 8;
			step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
			*(unsigned *)(regs->cp0_epc + 8) = BP;
		}
		step_bp[i].addr = targ;
		step_bp[i].val  = *(unsigned *)targ;
		*(unsigned *)targ = BP;
	} else {
		step_bp[0].addr = regs->cp0_epc + 4;
		step_bp[0].val  = *(unsigned *)(regs->cp0_epc + 4);
		*(unsigned *)(regs->cp0_epc + 4) = BP;
	}
}

/*
 *  If asynchronously interrupted by gdb, then we need to set a breakpoint
 *  at the interrupted instruction so that we wind up stopped with a
 *  reasonable stack frame.
 */
static struct gdb_bp_save async_bp;

/*
 * Swap the interrupted EPC with our asynchronous breakpoint routine.
 * This is safer than stuffing the breakpoint in-place, since no cache
 * flushes (or resulting smp_call_functions) are required.  The
 * assumption is that only one CPU will be handling asynchronous bp's,
 * and only one can be active at a time.
 */
extern spinlock_t smp_call_lock;

void set_async_breakpoint(unsigned long *epc)
{
	/* skip breaking into userland */
	if ((*epc & 0x80000000) == 0)
		return;

#ifdef CONFIG_SMP
	/* avoid deadlock if someone is make IPC */
	if (spin_is_locked(&smp_call_lock))
		return;
#endif

	async_bp.addr = *epc;
	*epc = (unsigned long)async_breakpoint;
}

static void kgdb_wait(void *arg)
{
	unsigned flags;
	int cpu = smp_processor_id();

	local_irq_save(flags);

	__raw_spin_lock(&kgdb_cpulock[cpu]);
	__raw_spin_unlock(&kgdb_cpulock[cpu]);

	local_irq_restore(flags);
}

/*
 * GDB stub needs to call kgdb_wait on all processor with interrupts
 * disabled, so it uses it's own special variant.
 */
static int kgdb_smp_call_kgdb_wait(void)
{
#ifdef CONFIG_SMP
	struct call_data_struct data;
	int i, cpus = num_online_cpus() - 1;
	int cpu = smp_processor_id();

	/*
	 * Can die spectacularly if this CPU isn't yet marked online
	 */
	BUG_ON(!cpu_online(cpu));

	if (!cpus)
		return 0;

	if (spin_is_locked(&smp_call_lock)) {
		/*
		 * Some other processor is trying to make us do something
		 * but we're not going to respond... give up
		 */
		return -1;
		}

	/*
	 * We will continue here, accepting the fact that
	 * the kernel may deadlock if another CPU attempts
	 * to call smp_call_function now...
	 */

	data.func = kgdb_wait;
	data.info = NULL;
	atomic_set(&data.started, 0);
	data.wait = 0;

	spin_lock(&smp_call_lock);
	call_data = &data;
	mb();

	/* Send a message to all other CPUs and wait for them to respond */
	for (i = 0; i < NR_CPUS; i++)
		if (cpu_online(i) && i != cpu)
			core_send_ipi(i, SMP_CALL_FUNCTION);

	/* Wait for response */
	/* FIXME: lock-up detection, backtrace on lock-up */
	while (atomic_read(&data.started) != cpus)
		barrier();

	call_data = NULL;
	spin_unlock(&smp_call_lock);
#endif

	return 0;
}

/*
 * This function does all command processing for interfacing to gdb.  It
 * returns 1 if you should skip the instruction at the trap address, 0
 * otherwise.
 */
void handle_exception (struct gdb_regs *regs)
{
	int trap;			/* Trap type */
	int sigval;
	long addr;
	int length;
	char *ptr;
	unsigned long *stack;
	int i;
	int bflag = 0;

	kgdb_started = 1;

	/*
	 * acquire the big kgdb spinlock
	 */
	if (!spin_trylock(&kgdb_lock)) {
		/*
		 * some other CPU has the lock, we should go back to
		 * receive the gdb_wait IPC
		 */
		return;
	}

	/*
	 * If we're in async_breakpoint(), restore the real EPC from
	 * the breakpoint.
	 */
	if (regs->cp0_epc == (unsigned long)async_breakinst) {
		regs->cp0_epc = async_bp.addr;
		async_bp.addr = 0;
	}

	/*
	 * acquire the CPU spinlocks
	 */
	for (i = num_online_cpus()-1; i >= 0; i--)
		if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
			panic("kgdb: couldn't get cpulock %d\n", i);

	/*
	 * force other cpus to enter kgdb
	 */
	kgdb_smp_call_kgdb_wait();

	/*
	 * If we're in breakpoint() increment the PC
	 */
	trap = (regs->cp0_cause & 0x7c) >> 2;
	if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
		regs->cp0_epc += 4;

	/*
	 * If we were single_stepping, restore the opcodes hoisted
	 * for the breakpoint[s].
	 */
	if (step_bp[0].addr) {
		*(unsigned *)step_bp[0].addr = step_bp[0].val;
		step_bp[0].addr = 0;

		if (step_bp[1].addr) {
			*(unsigned *)step_bp[1].addr = step_bp[1].val;
			step_bp[1].addr = 0;
		}
	}

	stack = (long *)regs->reg29;			/* stack ptr */
	sigval = computeSignal(trap);

	/*
	 * reply to host that an exception has occurred
	 */
	ptr = output_buffer;

	/*
	 * Send trap type (converted to signal)
	 */
	*ptr++ = 'T';
	*ptr++ = hexchars[sigval >> 4];
	*ptr++ = hexchars[sigval & 0xf];

	/*
	 * Send Error PC
	 */
	*ptr++ = hexchars[REG_EPC >> 4];
	*ptr++ = hexchars[REG_EPC & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&regs->cp0_epc, ptr, sizeof(long), 0);
	*ptr++ = ';';

	/*
	 * Send frame pointer
	 */
	*ptr++ = hexchars[REG_FP >> 4];
	*ptr++ = hexchars[REG_FP & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&regs->reg30, ptr, sizeof(long), 0);
	*ptr++ = ';';

	/*
	 * Send stack pointer
	 */
	*ptr++ = hexchars[REG_SP >> 4];
	*ptr++ = hexchars[REG_SP & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&regs->reg29, ptr, sizeof(long), 0);
	*ptr++ = ';';

	*ptr++ = 0;
	putpacket(output_buffer);	/* send it off... */

	/*
	 * Wait for input from remote GDB
	 */
	while (1) {
		output_buffer[0] = 0;
		getpacket(input_buffer);

		switch (input_buffer[0])
		{
		case '?':
			output_buffer[0] = 'S';
			output_buffer[1] = hexchars[sigval >> 4];
			output_buffer[2] = hexchars[sigval & 0xf];
			output_buffer[3] = 0;
			break;

		/*
		 * Detach debugger; let CPU run
		 */
		case 'D':
			putpacket(output_buffer);
			goto finish_kgdb;
			break;

		case 'd':
			/* toggle debug flag */
			break;

		/*
		 * Return the value of the CPU registers
		 */
		case 'g':
			ptr = output_buffer;
			ptr = mem2hex((char *)&regs->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
			ptr = mem2hex((char *)&regs->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
			ptr = mem2hex((char *)&regs->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
			ptr = mem2hex((char *)&regs->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
			ptr = mem2hex((char *)&regs->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
			ptr = mem2hex((char *)&regs->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
			break;

		/*
		 * set the value of the CPU registers - return OK
		 */
		case 'G':
		{
			ptr = &input_buffer[1];
			hex2mem(ptr, (char *)&regs->reg0, 32*sizeof(long), 0, 0);
			ptr += 32*(2*sizeof(long));
			hex2mem(ptr, (char *)&regs->cp0_status, 6*sizeof(long), 0, 0);
			ptr += 6*(2*sizeof(long));
			hex2mem(ptr, (char *)&regs->fpr0, 32*sizeof(long), 0, 0);
			ptr += 32*(2*sizeof(long));
			hex2mem(ptr, (char *)&regs->cp1_fsr, 2*sizeof(long), 0, 0);
			ptr += 2*(2*sizeof(long));
			hex2mem(ptr, (char *)&regs->frame_ptr, 2*sizeof(long), 0, 0);
			ptr += 2*(2*sizeof(long));
			hex2mem(ptr, (char *)&regs->cp0_index, 16*sizeof(long), 0, 0);
			strcpy(output_buffer,"OK");
		 }
		break;

		/*
		 * mAA..AA,LLLL  Read LLLL bytes at address AA..AA
		 */
		case 'm':
			ptr = &input_buffer[1];

			if (hexToLong(&ptr, &addr)
				&& *ptr++ == ','
				&& hexToInt(&ptr, &length)) {
				if (mem2hex((char *)addr, output_buffer, length, 1))
					break;
				strcpy (output_buffer, "E03");
			} else
				strcpy(output_buffer,"E01");
			break;

		/*
		 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
		 */
		case 'X':
			bflag = 1;
			/* fall through */

		/*
		 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
		 */
		case 'M':
			ptr = &input_buffer[1];

			if (hexToLong(&ptr, &addr)
				&& *ptr++ == ','
				&& hexToInt(&ptr, &length)
				&& *ptr++ == ':') {
				if (hex2mem(ptr, (char *)addr, length, bflag, 1))
					strcpy(output_buffer, "OK");
				else
					strcpy(output_buffer, "E03");
			}
			else
				strcpy(output_buffer, "E02");
			break;

		/*
		 * cAA..AA    Continue at address AA..AA(optional)
		 */
		case 'c':
			/* try to read optional parameter, pc unchanged if no parm */

			ptr = &input_buffer[1];
			if (hexToLong(&ptr, &addr))
				regs->cp0_epc = addr;

			goto exit_kgdb_exception;
			break;

		/*
		 * kill the program; let us try to restart the machine
		 * Reset the whole machine.
		 */
		case 'k':
		case 'r':
			machine_restart("kgdb restarts machine");
			break;

		/*
		 * Step to next instruction
		 */
		case 's':
			/*
			 * There is no single step insn in the MIPS ISA, so we
			 * use breakpoints and continue, instead.
			 */
			single_step(regs);
			goto exit_kgdb_exception;
			/* NOTREACHED */
			break;

		/*
		 * Set baud rate (bBB)
		 * FIXME: Needs to be written
		 */
		case 'b':
		{
#if 0
			int baudrate;
			extern void set_timer_3();

			ptr = &input_buffer[1];
			if (!hexToInt(&ptr, &baudrate))
			{
				strcpy(output_buffer,"B01");
				break;
			}

			/* Convert baud rate to uart clock divider */

			switch (baudrate)
			{
				case 38400:
					baudrate = 16;
					break;
				case 19200:
					baudrate = 33;
					break;
				case 9600:
					baudrate = 65;
					break;
				default:
					baudrate = 0;
					strcpy(output_buffer,"B02");
					goto x1;
			}

			if (baudrate) {
				putpacket("OK");	/* Ack before changing speed */
				set_timer_3(baudrate); /* Set it */
			}
#endif
		}
		break;

		}			/* switch */

		/*
		 * reply to the request
		 */

		putpacket(output_buffer);

	} /* while */

	return;

finish_kgdb:
	restore_debug_traps();

exit_kgdb_exception:
	/* release locks so other CPUs can go */
	for (i = num_online_cpus()-1; i >= 0; i--)
		__raw_spin_unlock(&kgdb_cpulock[i]);
	spin_unlock(&kgdb_lock);

	__flush_cache_all();
	return;
}

/*
 * This function will generate a breakpoint exception.  It is used at the
 * beginning of a program to sync up with a debugger and can be used
 * otherwise as a quick means to stop program execution and "break" into
 * the debugger.
 */
void breakpoint(void)
{
	if (!initialized)
		return;

	__asm__ __volatile__(
			".globl	breakinst\n\t"
			".set\tnoreorder\n\t"
			"nop\n"
			"breakinst:\tbreak\n\t"
			"nop\n\t"
			".set\treorder"
			);
}

/* Nothing but the break; don't pollute any registers */
void async_breakpoint(void)
{
	__asm__ __volatile__(
			".globl	async_breakinst\n\t"
			".set\tnoreorder\n\t"
			"nop\n"
			"async_breakinst:\tbreak\n\t"
			"nop\n\t"
			".set\treorder"
			);
}

void adel(void)
{
	__asm__ __volatile__(
			".globl\tadel\n\t"
			"lui\t$8,0x8000\n\t"
			"lw\t$9,1($8)\n\t"
			);
}

/*
 * malloc is needed by gdb client in "call func()", even a private one
 * will make gdb happy
 */
static void * __attribute_used__ malloc(size_t size)
{
	return kmalloc(size, GFP_ATOMIC);
}

static void __attribute_used__ free (void *where)
{
	kfree(where);
}

#ifdef CONFIG_GDB_CONSOLE

void gdb_putsn(const char *str, int l)
{
	char outbuf[18];

	if (!kgdb_started)
		return;

	outbuf[0]='O';

	while(l) {
		int i = (l>8)?8:l;
		mem2hex((char *)str, &outbuf[1], i, 0);
		outbuf[(i*2)+1]=0;
		putpacket(outbuf);
		str += i;
		l -= i;
	}
}

static void gdb_console_write(struct console *con, const char *s, unsigned n)
{
	gdb_putsn(s, n);
}

static struct console gdb_console = {
	.name	= "gdb",
	.write	= gdb_console_write,
	.flags	= CON_PRINTBUFFER,
	.index	= -1
};

static int __init register_gdb_console(void)
{
	register_console(&gdb_console);

	return 0;
}

console_initcall(register_gdb_console);

#endif