Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*
 *  arch/sh/kernel/time.c
 *
 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 *  Copyright (C) 2002, 2003, 2004  Paul Mundt
 *  Copyright (C) 2002  M. R. Brown  <mrbrown@linux-sh.org>
 *
 *  Some code taken from i386 version.
 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/profile.h>

#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/rtc.h>
#include <asm/freq.h>
#include <asm/cpu/timer.h>
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
#endif

#include <linux/timex.h>
#include <linux/irq.h>

#define TMU_TOCR_INIT	0x00
#define TMU0_TCR_INIT	0x0020
#define TMU_TSTR_INIT	1

#define TMU0_TCR_CALIB	0x0000

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
#define CLOCKGEN_MEMCLKCR 0xbb040038
#define MEMCLKCR_RATIO_MASK 0x7
#endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */

extern unsigned long wall_jiffies;
#define TICK_SIZE (tick_nsec / 1000)
DEFINE_SPINLOCK(tmu0_lock);

u64 jiffies_64 = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

/* XXX: Can we initialize this in a routine somewhere?  Dreamcast doesn't want
 * these routines anywhere... */
#ifdef CONFIG_SH_RTC
void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday;
int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday;
#else
void (*rtc_get_time)(struct timespec *);
int (*rtc_set_time)(const time_t);
#endif

#if defined(CONFIG_CPU_SUBTYPE_SH7300)
static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 };
#endif
#if defined(CONFIG_CPU_SH3)
static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
static int stc_values[]      = { 0, 1, 4, 2, 5, 0, 0, 0 };
#define bfc_divisors stc_multipliers
#define bfc_values stc_values
static int ifc_divisors[]    = { 1, 2, 3, 4, 1, 1, 1, 1 };
static int ifc_values[]      = { 0, 1, 4, 2, 0, 0, 0, 0 };
static int pfc_divisors[]    = { 1, 2, 3, 4, 6, 1, 1, 1 };
static int pfc_values[]      = { 0, 1, 4, 2, 5, 0, 0, 0 };
#elif defined(CONFIG_CPU_SH4)
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 };
static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
#define bfc_divisors ifc_divisors	/* Same */
#define bfc_values ifc_values
#define pfc_divisors ifc_divisors	/* Same */
#define pfc_values ifc_values
#else
static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
static int ifc_values[]   = { 0, 1, 2, 3, 0, 4, 0, 5 };
#define bfc_divisors ifc_divisors	/* Same */
#define bfc_values ifc_values
static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
static int pfc_values[]   = { 0, 0, 1, 2, 0, 3, 0, 4 };
#endif
#else
#error "Unknown ifc/bfc/pfc/stc values for this processor"
#endif

/*
 * Scheduler clock - returns current time in nanosec units.
 */
unsigned long long sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

static unsigned long do_gettimeoffset(void)
{
	int count;
	unsigned long flags;

	static int count_p = 0x7fffffff;    /* for the first call after boot */
	static unsigned long jiffies_p = 0;

	/*
	 * cache volatile jiffies temporarily; we have IRQs turned off.
	 */
	unsigned long jiffies_t;

	spin_lock_irqsave(&tmu0_lock, flags);
	/* timer count may underflow right here */
	count = ctrl_inl(TMU0_TCNT);	/* read the latched count */

	jiffies_t = jiffies;

	/*
	 * avoiding timer inconsistencies (they are rare, but they happen)...
	 * there is one kind of problem that must be avoided here:
	 *  1. the timer counter underflows
	 */

	if( jiffies_t == jiffies_p ) {
		if( count > count_p ) {
			/* the nutcase */

			if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
				/*
				 * We cannot detect lost timer interrupts ...
				 * well, that's why we call them lost, don't we? :)
				 * [hmm, on the Pentium and Alpha we can ... sort of]
				 */
				count -= LATCH;
			} else {
				printk("do_slow_gettimeoffset(): hardware timer problem?\n");
			}
		}
	} else
		jiffies_p = jiffies_t;

	count_p = count;
	spin_unlock_irqrestore(&tmu0_lock, flags);

	count = ((LATCH-1) - count) * TICK_SIZE;
	count = (count + LATCH/2) / LATCH;

	return count;
}

void do_gettimeofday(struct timeval *tv)
{
	unsigned long seq;
	unsigned long usec, sec;
	unsigned long lost;

	do {
		seq = read_seqbegin(&xtime_lock);
		usec = do_gettimeoffset();

		lost = jiffies - wall_jiffies;
		if (lost)
			usec += lost * (1000000 / HZ);

		sec = xtime.tv_sec;
		usec += xtime.tv_nsec / 1000;
	} while (read_seqretry(&xtime_lock, seq));

	while (usec >= 1000000) {
		usec -= 1000000;
		sec++;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

EXPORT_SYMBOL(do_gettimeofday);

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);
	/*
	 * This is revolting. We need to set "xtime" correctly. However, the
	 * value in this location is the value at the most recent update of
	 * wall time.  Discover what correction gettimeofday() would have
	 * made, and then undo it!
	 */
	nsec -= 1000 * (do_gettimeoffset() +
				(jiffies - wall_jiffies) * (1000000 / HZ));

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	time_adjust = 0;		/* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;
	write_sequnlock_irq(&xtime_lock);
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/* last time the RTC clock got updated */
static long last_rtc_update;

/*
 * timer_interrupt() needs to keep up the real-time clock,
 * as well as call the "do_timer()" routine every clocktick
 */
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	do_timer(regs);
#ifndef CONFIG_SMP
	update_process_times(user_mode(regs));
#endif
	profile_tick(CPU_PROFILING, regs);

#ifdef CONFIG_HEARTBEAT
	if (sh_mv.mv_heartbeat != NULL)
		sh_mv.mv_heartbeat();
#endif

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	if ((time_status & STA_UNSYNC) == 0 &&
	    xtime.tv_sec > last_rtc_update + 660 &&
	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
		if (rtc_set_time(xtime.tv_sec) == 0)
			last_rtc_update = xtime.tv_sec;
		else
			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
	}
}

/*
 * This is the same as the above, except we _also_ save the current
 * Time Stamp Counter value at the time of the timer interrupt, so that
 * we later on can estimate the time of day more exactly.
 */
static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned long timer_status;

	/* Clear UNF bit */
	timer_status = ctrl_inw(TMU0_TCR);
	timer_status &= ~0x100;
	ctrl_outw(timer_status, TMU0_TCR);

	/*
	 * Here we are in the timer irq handler. We just have irqs locally
	 * disabled but we don't know if the timer_bh is running on the other
	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
	 * the irq version of write_lock because as just said we have irq
	 * locally disabled. -arca
	 */
	write_seqlock(&xtime_lock);
	do_timer_interrupt(irq, NULL, regs);
	write_sequnlock(&xtime_lock);

	return IRQ_HANDLED;
}

/*
 * Hah!  We'll see if this works (switching from usecs to nsecs).
 */
static unsigned int __init get_timer_frequency(void)
{
	u32 freq;
	struct timespec ts1, ts2;
	unsigned long diff_nsec;
	unsigned long factor;

	/* Setup the timer:  We don't want to generate interrupts, just
	 * have it count down at its natural rate.
	 */
	ctrl_outb(0, TMU_TSTR);
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
#endif
	ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
	ctrl_outl(0xffffffff, TMU0_TCOR);
	ctrl_outl(0xffffffff, TMU0_TCNT);

	rtc_get_time(&ts2);

	do {
		rtc_get_time(&ts1);
	} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);

	/* actually start the timer */
	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);

	do {
		rtc_get_time(&ts2);
	} while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec);

	freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
	if (ts2.tv_nsec < ts1.tv_nsec) {
		ts2.tv_nsec += 1000000000;
		ts2.tv_sec--;
	}

	diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec);

	/* this should work well if the RTC has a precision of n Hz, where
	 * n is an integer.  I don't think we have to worry about the other
	 * cases. */
	factor = (1000000000 + diff_nsec/2) / diff_nsec;

	if (factor * diff_nsec > 1100000000 ||
	    factor * diff_nsec <  900000000)
		panic("weird RTC (diff_nsec %ld)", diff_nsec);

	return freq * factor;
}

void (*board_time_init)(void);
void (*board_timer_setup)(struct irqaction *irq);

static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;

static int __init sh_pclk_setup(char *str)
{
        unsigned int freq;

	if (get_option(&str, &freq))
		sh_pclk_freq = freq;

	return 1;
}
__setup("sh_pclk=", sh_pclk_setup);

static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};

void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc)
{
	unsigned int frqcr = ctrl_inw(FRQCR);

#if defined(CONFIG_CPU_SH3)
#if defined(CONFIG_CPU_SUBTYPE_SH7300)
	*ifc = md_table[((frqcr & 0x0070) >> 4)];
	*bfc = md_table[((frqcr & 0x0700) >> 8)];
	*pfc = md_table[frqcr & 0x0007];
#elif defined(CONFIG_CPU_SUBTYPE_SH7705)
	*bfc = stc_multipliers[(frqcr & 0x0300) >> 8];
	*ifc = ifc_divisors[(frqcr & 0x0030) >> 4];
	*pfc = pfc_divisors[frqcr & 0x0003];
#else
	unsigned int tmp;

	tmp  = (frqcr & 0x8000) >> 13;
	tmp |= (frqcr & 0x0030) >>  4;
	*bfc = stc_multipliers[tmp];
	tmp  = (frqcr & 0x4000)  >> 12;
	tmp |= (frqcr & 0x000c) >> 2;
	*ifc = ifc_divisors[tmp];
	tmp  = (frqcr & 0x2000) >> 11;
	tmp |= frqcr & 0x0003;
	*pfc = pfc_divisors[tmp];
#endif
#elif defined(CONFIG_CPU_SH4)
#if defined(CONFIG_CPU_SUBTYPE_SH73180)
	*ifc = ifc_divisors[(frqcr>> 20) & 0x0007];
	*bfc = bfc_divisors[(frqcr>> 12) & 0x0007];
	*pfc = pfc_divisors[frqcr & 0x0007];
#else
	*ifc = ifc_divisors[(frqcr >> 6) & 0x0007];
	*bfc = bfc_divisors[(frqcr >> 3) & 0x0007];
	*pfc = pfc_divisors[frqcr & 0x0007];
#endif
#endif
}

/*
 * This bit of ugliness builds up accessor routines to get at both
 * the divisors and the physical values.
 */
#define _FREQ_TABLE(x) \
	unsigned int get_##x##_divisor(unsigned int value)	\
		{ return x##_divisors[value]; }			\
								\
	unsigned int get_##x##_value(unsigned int divisor)	\
		{ return x##_values[(divisor - 1)]; }

_FREQ_TABLE(ifc);
_FREQ_TABLE(bfc);
_FREQ_TABLE(pfc);

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1

/*
 * The ST40 divisors are totally different so we set the cpu data
 * clocks using a different algorithm
 *
 * I've just plugged this from the 2.4 code
 *	- Alex Bennee <kernel-hacker@bennee.com>
 */
#define CCN_PVR_CHIP_SHIFT 24
#define CCN_PVR_CHIP_MASK  0xff
#define CCN_PVR_CHIP_ST40STB1 0x4


struct frqcr_data {
	unsigned short frqcr;

	struct {
		unsigned char multiplier;
		unsigned char divisor;
	} factor[3];
};

static struct frqcr_data st40_frqcr_table[] = {
	{ 0x000, {{1,1}, {1,1}, {1,2}}},
	{ 0x002, {{1,1}, {1,1}, {1,4}}},
	{ 0x004, {{1,1}, {1,1}, {1,8}}},
	{ 0x008, {{1,1}, {1,2}, {1,2}}},
	{ 0x00A, {{1,1}, {1,2}, {1,4}}},
	{ 0x00C, {{1,1}, {1,2}, {1,8}}},
	{ 0x011, {{1,1}, {2,3}, {1,6}}},
	{ 0x013, {{1,1}, {2,3}, {1,3}}},
	{ 0x01A, {{1,1}, {1,2}, {1,4}}},
	{ 0x01C, {{1,1}, {1,2}, {1,8}}},
	{ 0x023, {{1,1}, {2,3}, {1,3}}},
	{ 0x02C, {{1,1}, {1,2}, {1,8}}},
	{ 0x048, {{1,2}, {1,2}, {1,4}}},
	{ 0x04A, {{1,2}, {1,2}, {1,6}}},
	{ 0x04C, {{1,2}, {1,2}, {1,8}}},
	{ 0x05A, {{1,2}, {1,3}, {1,6}}},
	{ 0x05C, {{1,2}, {1,3}, {1,6}}},
	{ 0x063, {{1,2}, {1,4}, {1,4}}},
	{ 0x06C, {{1,2}, {1,4}, {1,8}}},
	{ 0x091, {{1,3}, {1,3}, {1,6}}},
	{ 0x093, {{1,3}, {1,3}, {1,6}}},
	{ 0x0A3, {{1,3}, {1,6}, {1,6}}},
	{ 0x0DA, {{1,4}, {1,4}, {1,8}}},
	{ 0x0DC, {{1,4}, {1,4}, {1,8}}},
	{ 0x0EC, {{1,4}, {1,8}, {1,8}}},
	{ 0x123, {{1,4}, {1,4}, {1,8}}},
	{ 0x16C, {{1,4}, {1,8}, {1,8}}},
};

struct memclk_data {
	unsigned char multiplier;
	unsigned char divisor;
};

static struct memclk_data st40_memclk_table[8] = {
	{1,1},	// 000
	{1,2},	// 001
	{1,3},	// 010
	{2,3},	// 011
	{1,4},	// 100
	{1,6},	// 101
	{1,8},	// 110
	{1,8}	// 111
};

static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr)
{
	unsigned int cpu_clock, master_clock, bus_clock, memory_clock;
	struct frqcr_data *d;
	int a;
	unsigned long memclkcr;
	struct memclk_data *e;

	for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) {
		d = &st40_frqcr_table[a];

		if (d->frqcr == (frqcr & 0x1ff))
			break;
	}

	if (a == ARRAY_SIZE(st40_frqcr_table)) {
		d = st40_frqcr_table;

		printk("ERROR: Unrecognised FRQCR value (0x%x), "
		       "using default multipliers\n", frqcr);
	}

	memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
	e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];

	printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d "
	       "Mem: %d/%d Periph: %d/%d\n",
	       d->factor[0].multiplier, d->factor[0].divisor,
	       d->factor[1].multiplier, d->factor[1].divisor,
	       e->multiplier,           e->divisor,
	       d->factor[2].multiplier, d->factor[2].divisor);

	master_clock = module_clock * d->factor[2].divisor
				    / d->factor[2].multiplier;
	bus_clock    = master_clock * d->factor[1].multiplier
				    / d->factor[1].divisor;
	memory_clock = master_clock * e->multiplier
				    / e->divisor;
	cpu_clock    = master_clock * d->factor[0].multiplier
				    / d->factor[0].divisor;

	current_cpu_data.cpu_clock    = cpu_clock;
	current_cpu_data.master_clock = master_clock;
	current_cpu_data.bus_clock    = bus_clock;
	current_cpu_data.memory_clock = memory_clock;
	current_cpu_data.module_clock = module_clock;
}
#endif

void __init time_init(void)
{
	unsigned int timer_freq = 0;
	unsigned int ifc, pfc, bfc;
	unsigned long interval;
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	unsigned long pvr;
	unsigned short frqcr;
#endif

	if (board_time_init)
		board_time_init();

	/*
	 * If we don't have an RTC (such as with the SH7300), don't attempt to
	 * probe the timer frequency. Rely on an either hardcoded peripheral
	 * clock value, or on the sh_pclk command line option. Note that we
	 * still need to have CONFIG_SH_PCLK_FREQ set in order for things like
	 * CLOCK_TICK_RATE to be sane.
	 */
	current_cpu_data.module_clock = sh_pclk_freq;

#ifdef CONFIG_SH_PCLK_CALC
	/* XXX: Switch this over to a more generic test. */
	{
		unsigned int freq;

		/*
		 * If we've specified a peripheral clock frequency, and we have
		 * an RTC, compare it against the autodetected value. Complain
		 * if there's a mismatch.
		 */
		timer_freq = get_timer_frequency();
		freq = timer_freq * 4;

		if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) {
			printk(KERN_NOTICE "Calculated peripheral clock value "
			       "%d differs from sh_pclk value %d, fixing..\n",
			       freq, sh_pclk_freq);
			current_cpu_data.module_clock = freq;
		}
	}
#endif

#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	/* XXX: Update ST40 code to use board_time_init() */
	pvr = ctrl_inl(CCN_PVR);
	frqcr = ctrl_inw(FRQCR);
	printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr);

	if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1)
		st40_specific_time_init(current_cpu_data.module_clock, frqcr);
	else
#endif
		get_current_frequency_divisors(&ifc, &bfc, &pfc);

	if (rtc_get_time) {
		rtc_get_time(&xtime);
	} else {
		xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
		xtime.tv_nsec = 0;
	}

        set_normalized_timespec(&wall_to_monotonic,
                                -xtime.tv_sec, -xtime.tv_nsec);

	if (board_timer_setup) {
		board_timer_setup(&irq0);
	} else {
		setup_irq(TIMER_IRQ, &irq0);
	}

	/*
	 * for ST40 chips the current_cpu_data should already be set
	 * so not having valid pfc/bfc/ifc shouldn't be a problem
	 */
	if (!current_cpu_data.master_clock)
		current_cpu_data.master_clock = current_cpu_data.module_clock * pfc;
	if (!current_cpu_data.bus_clock)
		current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc;
	if (!current_cpu_data.cpu_clock)
		current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc;

	printk("CPU clock: %d.%02dMHz\n",
	       (current_cpu_data.cpu_clock / 1000000),
	       (current_cpu_data.cpu_clock % 1000000)/10000);
	printk("Bus clock: %d.%02dMHz\n",
	       (current_cpu_data.bus_clock / 1000000),
	       (current_cpu_data.bus_clock % 1000000)/10000);
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1
	printk("Memory clock: %d.%02dMHz\n",
	       (current_cpu_data.memory_clock / 1000000),
	       (current_cpu_data.memory_clock % 1000000)/10000);
#endif
	printk("Module clock: %d.%02dMHz\n",
	       (current_cpu_data.module_clock / 1000000),
	       (current_cpu_data.module_clock % 1000000)/10000);

	interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ;

	printk("Interval = %ld\n", interval);

	/* Start TMU0 */
	ctrl_outb(0, TMU_TSTR);
#if !defined(CONFIG_CPU_SUBTYPE_SH7300)
	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
#endif
	ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
	ctrl_outl(interval, TMU0_TCOR);
	ctrl_outl(interval, TMU0_TCNT);
	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);

#if defined(CONFIG_SH_KGDB)
	/*
	 * Set up kgdb as requested. We do it here because the serial
	 * init uses the timer vars we just set up for figuring baud.
	 */
	kgdb_init();
#endif
}