free electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * z3fold.c
 *
 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
 * Copyright (C) 2016, Sony Mobile Communications Inc.
 *
 * This implementation is based on zbud written by Seth Jennings.
 *
 * z3fold is an special purpose allocator for storing compressed pages. It
 * can store up to three compressed pages per page which improves the
 * compression ratio of zbud while retaining its main concepts (e. g. always
 * storing an integral number of objects per page) and simplicity.
 * It still has simple and deterministic reclaim properties that make it
 * preferable to a higher density approach (with no requirement on integral
 * number of object per page) when reclaim is used.
 *
 * As in zbud, pages are divided into "chunks".  The size of the chunks is
 * fixed at compile time and is determined by NCHUNKS_ORDER below.
 *
 * z3fold doesn't export any API and is meant to be used via zpool API.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/atomic.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/zpool.h>

/*****************
 * Structures
*****************/
struct z3fold_pool;
struct z3fold_ops {
	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
};

enum buddy {
	HEADLESS = 0,
	FIRST,
	MIDDLE,
	LAST,
	BUDDIES_MAX
};

/*
 * struct z3fold_header - z3fold page metadata occupying the first chunk of each
 *			z3fold page, except for HEADLESS pages
 * @buddy:	links the z3fold page into the relevant list in the pool
 * @page_lock:		per-page lock
 * @refcount:		reference cound for the z3fold page
 * @first_chunks:	the size of the first buddy in chunks, 0 if free
 * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
 * @last_chunks:	the size of the last buddy in chunks, 0 if free
 * @first_num:		the starting number (for the first handle)
 */
struct z3fold_header {
	struct list_head buddy;
	spinlock_t page_lock;
	struct kref refcount;
	unsigned short first_chunks;
	unsigned short middle_chunks;
	unsigned short last_chunks;
	unsigned short start_middle;
	unsigned short first_num:2;
};

/*
 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
 * adjusting internal fragmentation.  It also determines the number of
 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
 * in the beginning of an allocated page are occupied by z3fold header, so
 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
 * which shows the max number of free chunks in z3fold page, also there will
 * be 63, or 62, respectively, freelists per pool.
 */
#define NCHUNKS_ORDER	6

#define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
#define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
#define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
#define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
#define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)

#define BUDDY_MASK	(0x3)

/**
 * struct z3fold_pool - stores metadata for each z3fold pool
 * @lock:	protects all pool fields and first|last_chunk fields of any
 *		z3fold page in the pool
 * @unbuddied:	array of lists tracking z3fold pages that contain 2- buddies;
 *		the lists each z3fold page is added to depends on the size of
 *		its free region.
 * @lru:	list tracking the z3fold pages in LRU order by most recently
 *		added buddy.
 * @pages_nr:	number of z3fold pages in the pool.
 * @ops:	pointer to a structure of user defined operations specified at
 *		pool creation time.
 *
 * This structure is allocated at pool creation time and maintains metadata
 * pertaining to a particular z3fold pool.
 */
struct z3fold_pool {
	spinlock_t lock;
	struct list_head unbuddied[NCHUNKS];
	struct list_head lru;
	atomic64_t pages_nr;
	const struct z3fold_ops *ops;
	struct zpool *zpool;
	const struct zpool_ops *zpool_ops;
};

/*
 * Internal z3fold page flags
 */
enum z3fold_page_flags {
	PAGE_HEADLESS = 0,
	MIDDLE_CHUNK_MAPPED,
};


/*****************
 * Helpers
*****************/

/* Converts an allocation size in bytes to size in z3fold chunks */
static int size_to_chunks(size_t size)
{
	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
}

#define for_each_unbuddied_list(_iter, _begin) \
	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)

/* Initializes the z3fold header of a newly allocated z3fold page */
static struct z3fold_header *init_z3fold_page(struct page *page)
{
	struct z3fold_header *zhdr = page_address(page);

	INIT_LIST_HEAD(&page->lru);
	clear_bit(PAGE_HEADLESS, &page->private);
	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);

	spin_lock_init(&zhdr->page_lock);
	kref_init(&zhdr->refcount);
	zhdr->first_chunks = 0;
	zhdr->middle_chunks = 0;
	zhdr->last_chunks = 0;
	zhdr->first_num = 0;
	zhdr->start_middle = 0;
	INIT_LIST_HEAD(&zhdr->buddy);
	return zhdr;
}

/* Resets the struct page fields and frees the page */
static void free_z3fold_page(struct page *page)
{
	__free_page(page);
}

static void release_z3fold_page(struct kref *ref)
{
	struct z3fold_header *zhdr;
	struct page *page;

	zhdr = container_of(ref, struct z3fold_header, refcount);
	page = virt_to_page(zhdr);

	if (!list_empty(&zhdr->buddy))
		list_del(&zhdr->buddy);
	if (!list_empty(&page->lru))
		list_del(&page->lru);
	free_z3fold_page(page);
}

/* Lock a z3fold page */
static inline void z3fold_page_lock(struct z3fold_header *zhdr)
{
	spin_lock(&zhdr->page_lock);
}

/* Try to lock a z3fold page */
static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
{
	return spin_trylock(&zhdr->page_lock);
}

/* Unlock a z3fold page */
static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
{
	spin_unlock(&zhdr->page_lock);
}

/*
 * Encodes the handle of a particular buddy within a z3fold page
 * Pool lock should be held as this function accesses first_num
 */
static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
{
	unsigned long handle;

	handle = (unsigned long)zhdr;
	if (bud != HEADLESS)
		handle += (bud + zhdr->first_num) & BUDDY_MASK;
	return handle;
}

/* Returns the z3fold page where a given handle is stored */
static struct z3fold_header *handle_to_z3fold_header(unsigned long handle)
{
	return (struct z3fold_header *)(handle & PAGE_MASK);
}

/*
 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
 *  but that doesn't matter. because the masking will result in the
 *  correct buddy number.
 */
static enum buddy handle_to_buddy(unsigned long handle)
{
	struct z3fold_header *zhdr = handle_to_z3fold_header(handle);
	return (handle - zhdr->first_num) & BUDDY_MASK;
}

/*
 * Returns the number of free chunks in a z3fold page.
 * NB: can't be used with HEADLESS pages.
 */
static int num_free_chunks(struct z3fold_header *zhdr)
{
	int nfree;
	/*
	 * If there is a middle object, pick up the bigger free space
	 * either before or after it. Otherwise just subtract the number
	 * of chunks occupied by the first and the last objects.
	 */
	if (zhdr->middle_chunks != 0) {
		int nfree_before = zhdr->first_chunks ?
			0 : zhdr->start_middle - ZHDR_CHUNKS;
		int nfree_after = zhdr->last_chunks ?
			0 : TOTAL_CHUNKS -
				(zhdr->start_middle + zhdr->middle_chunks);
		nfree = max(nfree_before, nfree_after);
	} else
		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
	return nfree;
}

/*****************
 * API Functions
*****************/
/**
 * z3fold_create_pool() - create a new z3fold pool
 * @gfp:	gfp flags when allocating the z3fold pool structure
 * @ops:	user-defined operations for the z3fold pool
 *
 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
 * failed.
 */
static struct z3fold_pool *z3fold_create_pool(gfp_t gfp,
		const struct z3fold_ops *ops)
{
	struct z3fold_pool *pool;
	int i;

	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
	if (!pool)
		return NULL;
	spin_lock_init(&pool->lock);
	for_each_unbuddied_list(i, 0)
		INIT_LIST_HEAD(&pool->unbuddied[i]);
	INIT_LIST_HEAD(&pool->lru);
	atomic64_set(&pool->pages_nr, 0);
	pool->ops = ops;
	return pool;
}

/**
 * z3fold_destroy_pool() - destroys an existing z3fold pool
 * @pool:	the z3fold pool to be destroyed
 *
 * The pool should be emptied before this function is called.
 */
static void z3fold_destroy_pool(struct z3fold_pool *pool)
{
	kfree(pool);
}

static inline void *mchunk_memmove(struct z3fold_header *zhdr,
				unsigned short dst_chunk)
{
	void *beg = zhdr;
	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
		       beg + (zhdr->start_middle << CHUNK_SHIFT),
		       zhdr->middle_chunks << CHUNK_SHIFT);
}

#define BIG_CHUNK_GAP	3
/* Has to be called with lock held */
static int z3fold_compact_page(struct z3fold_header *zhdr)
{
	struct page *page = virt_to_page(zhdr);

	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
		return 0; /* can't move middle chunk, it's used */

	if (zhdr->middle_chunks == 0)
		return 0; /* nothing to compact */

	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
		/* move to the beginning */
		mchunk_memmove(zhdr, ZHDR_CHUNKS);
		zhdr->first_chunks = zhdr->middle_chunks;
		zhdr->middle_chunks = 0;
		zhdr->start_middle = 0;
		zhdr->first_num++;
		return 1;
	}

	/*
	 * moving data is expensive, so let's only do that if
	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
	 */
	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
			BIG_CHUNK_GAP) {
		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
		return 1;
	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
					+ zhdr->middle_chunks) >=
			BIG_CHUNK_GAP) {
		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
			zhdr->middle_chunks;
		mchunk_memmove(zhdr, new_start);
		zhdr->start_middle = new_start;
		return 1;
	}

	return 0;
}

/**
 * z3fold_alloc() - allocates a region of a given size
 * @pool:	z3fold pool from which to allocate
 * @size:	size in bytes of the desired allocation
 * @gfp:	gfp flags used if the pool needs to grow
 * @handle:	handle of the new allocation
 *
 * This function will attempt to find a free region in the pool large enough to
 * satisfy the allocation request.  A search of the unbuddied lists is
 * performed first. If no suitable free region is found, then a new page is
 * allocated and added to the pool to satisfy the request.
 *
 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
 * as z3fold pool pages.
 *
 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
 * a new page.
 */
static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	int chunks = 0, i, freechunks;
	struct z3fold_header *zhdr = NULL;
	enum buddy bud;
	struct page *page;

	if (!size || (gfp & __GFP_HIGHMEM))
		return -EINVAL;

	if (size > PAGE_SIZE)
		return -ENOSPC;

	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
		bud = HEADLESS;
	else {
		chunks = size_to_chunks(size);

		/* First, try to find an unbuddied z3fold page. */
		zhdr = NULL;
		for_each_unbuddied_list(i, chunks) {
			spin_lock(&pool->lock);
			zhdr = list_first_entry_or_null(&pool->unbuddied[i],
						struct z3fold_header, buddy);
			if (!zhdr || !z3fold_page_trylock(zhdr)) {
				spin_unlock(&pool->lock);
				continue;
			}
			kref_get(&zhdr->refcount);
			list_del_init(&zhdr->buddy);
			spin_unlock(&pool->lock);

			page = virt_to_page(zhdr);
			if (zhdr->first_chunks == 0) {
				if (zhdr->middle_chunks != 0 &&
				    chunks >= zhdr->start_middle)
					bud = LAST;
				else
					bud = FIRST;
			} else if (zhdr->last_chunks == 0)
				bud = LAST;
			else if (zhdr->middle_chunks == 0)
				bud = MIDDLE;
			else {
				z3fold_page_unlock(zhdr);
				spin_lock(&pool->lock);
				if (kref_put(&zhdr->refcount,
					     release_z3fold_page))
					atomic64_dec(&pool->pages_nr);
				spin_unlock(&pool->lock);
				pr_err("No free chunks in unbuddied\n");
				WARN_ON(1);
				continue;
			}
			goto found;
		}
		bud = FIRST;
	}

	/* Couldn't find unbuddied z3fold page, create new one */
	page = alloc_page(gfp);
	if (!page)
		return -ENOMEM;

	atomic64_inc(&pool->pages_nr);
	zhdr = init_z3fold_page(page);

	if (bud == HEADLESS) {
		set_bit(PAGE_HEADLESS, &page->private);
		spin_lock(&pool->lock);
		goto headless;
	}
	z3fold_page_lock(zhdr);

found:
	if (bud == FIRST)
		zhdr->first_chunks = chunks;
	else if (bud == LAST)
		zhdr->last_chunks = chunks;
	else {
		zhdr->middle_chunks = chunks;
		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
	}

	spin_lock(&pool->lock);
	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
			zhdr->middle_chunks == 0) {
		/* Add to unbuddied list */
		freechunks = num_free_chunks(zhdr);
		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
	}

headless:
	/* Add/move z3fold page to beginning of LRU */
	if (!list_empty(&page->lru))
		list_del(&page->lru);

	list_add(&page->lru, &pool->lru);

	*handle = encode_handle(zhdr, bud);
	spin_unlock(&pool->lock);
	if (bud != HEADLESS)
		z3fold_page_unlock(zhdr);

	return 0;
}

/**
 * z3fold_free() - frees the allocation associated with the given handle
 * @pool:	pool in which the allocation resided
 * @handle:	handle associated with the allocation returned by z3fold_alloc()
 *
 * In the case that the z3fold page in which the allocation resides is under
 * reclaim, as indicated by the PG_reclaim flag being set, this function
 * only sets the first|last_chunks to 0.  The page is actually freed
 * once both buddies are evicted (see z3fold_reclaim_page() below).
 */
static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
{
	struct z3fold_header *zhdr;
	int freechunks;
	struct page *page;
	enum buddy bud;

	zhdr = handle_to_z3fold_header(handle);
	page = virt_to_page(zhdr);

	if (test_bit(PAGE_HEADLESS, &page->private)) {
		/* HEADLESS page stored */
		bud = HEADLESS;
	} else {
		z3fold_page_lock(zhdr);
		bud = handle_to_buddy(handle);

		switch (bud) {
		case FIRST:
			zhdr->first_chunks = 0;
			break;
		case MIDDLE:
			zhdr->middle_chunks = 0;
			zhdr->start_middle = 0;
			break;
		case LAST:
			zhdr->last_chunks = 0;
			break;
		default:
			pr_err("%s: unknown bud %d\n", __func__, bud);
			WARN_ON(1);
			z3fold_page_unlock(zhdr);
			return;
		}
	}

	if (bud == HEADLESS) {
		spin_lock(&pool->lock);
		list_del(&page->lru);
		spin_unlock(&pool->lock);
		free_z3fold_page(page);
		atomic64_dec(&pool->pages_nr);
	} else {
		if (zhdr->first_chunks != 0 || zhdr->middle_chunks != 0 ||
		    zhdr->last_chunks != 0) {
			z3fold_compact_page(zhdr);
			/* Add to the unbuddied list */
			spin_lock(&pool->lock);
			if (!list_empty(&zhdr->buddy))
				list_del(&zhdr->buddy);
			freechunks = num_free_chunks(zhdr);
			list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
			spin_unlock(&pool->lock);
		}
		z3fold_page_unlock(zhdr);
		spin_lock(&pool->lock);
		if (kref_put(&zhdr->refcount, release_z3fold_page))
			atomic64_dec(&pool->pages_nr);
		spin_unlock(&pool->lock);
	}

}

/**
 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
 * @pool:	pool from which a page will attempt to be evicted
 * @retires:	number of pages on the LRU list for which eviction will
 *		be attempted before failing
 *
 * z3fold reclaim is different from normal system reclaim in that it is done
 * from the bottom, up. This is because only the bottom layer, z3fold, has
 * information on how the allocations are organized within each z3fold page.
 * This has the potential to create interesting locking situations between
 * z3fold and the user, however.
 *
 * To avoid these, this is how z3fold_reclaim_page() should be called:

 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
 * call the user-defined eviction handler with the pool and handle as
 * arguments.
 *
 * If the handle can not be evicted, the eviction handler should return
 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
 * appropriate list and try the next z3fold page on the LRU up to
 * a user defined number of retries.
 *
 * If the handle is successfully evicted, the eviction handler should
 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
 * contains logic to delay freeing the page if the page is under reclaim,
 * as indicated by the setting of the PG_reclaim flag on the underlying page.
 *
 * If all buddies in the z3fold page are successfully evicted, then the
 * z3fold page can be freed.
 *
 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
 * no pages to evict or an eviction handler is not registered, -EAGAIN if
 * the retry limit was hit.
 */
static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
{
	int i, ret = 0, freechunks;
	struct z3fold_header *zhdr;
	struct page *page;
	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;

	spin_lock(&pool->lock);
	if (!pool->ops || !pool->ops->evict || retries == 0) {
		spin_unlock(&pool->lock);
		return -EINVAL;
	}
	for (i = 0; i < retries; i++) {
		if (list_empty(&pool->lru)) {
			spin_unlock(&pool->lock);
			return -EINVAL;
		}
		page = list_last_entry(&pool->lru, struct page, lru);
		list_del_init(&page->lru);

		zhdr = page_address(page);
		if (!test_bit(PAGE_HEADLESS, &page->private)) {
			if (!list_empty(&zhdr->buddy))
				list_del_init(&zhdr->buddy);
			kref_get(&zhdr->refcount);
			spin_unlock(&pool->lock);
			z3fold_page_lock(zhdr);
			/*
			 * We need encode the handles before unlocking, since
			 * we can race with free that will set
			 * (first|last)_chunks to 0
			 */
			first_handle = 0;
			last_handle = 0;
			middle_handle = 0;
			if (zhdr->first_chunks)
				first_handle = encode_handle(zhdr, FIRST);
			if (zhdr->middle_chunks)
				middle_handle = encode_handle(zhdr, MIDDLE);
			if (zhdr->last_chunks)
				last_handle = encode_handle(zhdr, LAST);
			z3fold_page_unlock(zhdr);
		} else {
			first_handle = encode_handle(zhdr, HEADLESS);
			last_handle = middle_handle = 0;
			spin_unlock(&pool->lock);
		}

		/* Issue the eviction callback(s) */
		if (middle_handle) {
			ret = pool->ops->evict(pool, middle_handle);
			if (ret)
				goto next;
		}
		if (first_handle) {
			ret = pool->ops->evict(pool, first_handle);
			if (ret)
				goto next;
		}
		if (last_handle) {
			ret = pool->ops->evict(pool, last_handle);
			if (ret)
				goto next;
		}
next:
		if (test_bit(PAGE_HEADLESS, &page->private)) {
			if (ret == 0) {
				free_z3fold_page(page);
				return 0;
			} else {
				spin_lock(&pool->lock);
			}
		} else {
			z3fold_page_lock(zhdr);
			if ((zhdr->first_chunks || zhdr->last_chunks ||
			     zhdr->middle_chunks) &&
			    !(zhdr->first_chunks && zhdr->last_chunks &&
			      zhdr->middle_chunks)) {
				z3fold_compact_page(zhdr);
				/* add to unbuddied list */
				spin_lock(&pool->lock);
				freechunks = num_free_chunks(zhdr);
				list_add(&zhdr->buddy,
					 &pool->unbuddied[freechunks]);
				spin_unlock(&pool->lock);
			}
			z3fold_page_unlock(zhdr);
			spin_lock(&pool->lock);
			if (kref_put(&zhdr->refcount, release_z3fold_page)) {
				spin_unlock(&pool->lock);
				atomic64_dec(&pool->pages_nr);
				return 0;
			}
		}

		/*
		 * Add to the beginning of LRU.
		 * Pool lock has to be kept here to ensure the page has
		 * not already been released
		 */
		list_add(&page->lru, &pool->lru);
	}
	spin_unlock(&pool->lock);
	return -EAGAIN;
}

/**
 * z3fold_map() - maps the allocation associated with the given handle
 * @pool:	pool in which the allocation resides
 * @handle:	handle associated with the allocation to be mapped
 *
 * Extracts the buddy number from handle and constructs the pointer to the
 * correct starting chunk within the page.
 *
 * Returns: a pointer to the mapped allocation
 */
static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
{
	struct z3fold_header *zhdr;
	struct page *page;
	void *addr;
	enum buddy buddy;

	zhdr = handle_to_z3fold_header(handle);
	addr = zhdr;
	page = virt_to_page(zhdr);

	if (test_bit(PAGE_HEADLESS, &page->private))
		goto out;

	z3fold_page_lock(zhdr);
	buddy = handle_to_buddy(handle);
	switch (buddy) {
	case FIRST:
		addr += ZHDR_SIZE_ALIGNED;
		break;
	case MIDDLE:
		addr += zhdr->start_middle << CHUNK_SHIFT;
		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
		break;
	case LAST:
		addr += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
		break;
	default:
		pr_err("unknown buddy id %d\n", buddy);
		WARN_ON(1);
		addr = NULL;
		break;
	}

	z3fold_page_unlock(zhdr);
out:
	return addr;
}

/**
 * z3fold_unmap() - unmaps the allocation associated with the given handle
 * @pool:	pool in which the allocation resides
 * @handle:	handle associated with the allocation to be unmapped
 */
static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
{
	struct z3fold_header *zhdr;
	struct page *page;
	enum buddy buddy;

	zhdr = handle_to_z3fold_header(handle);
	page = virt_to_page(zhdr);

	if (test_bit(PAGE_HEADLESS, &page->private))
		return;

	z3fold_page_lock(zhdr);
	buddy = handle_to_buddy(handle);
	if (buddy == MIDDLE)
		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
	z3fold_page_unlock(zhdr);
}

/**
 * z3fold_get_pool_size() - gets the z3fold pool size in pages
 * @pool:	pool whose size is being queried
 *
 * Returns: size in pages of the given pool.
 */
static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
{
	return atomic64_read(&pool->pages_nr);
}

/*****************
 * zpool
 ****************/

static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
{
	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
		return pool->zpool_ops->evict(pool->zpool, handle);
	else
		return -ENOENT;
}

static const struct z3fold_ops z3fold_zpool_ops = {
	.evict =	z3fold_zpool_evict
};

static void *z3fold_zpool_create(const char *name, gfp_t gfp,
			       const struct zpool_ops *zpool_ops,
			       struct zpool *zpool)
{
	struct z3fold_pool *pool;

	pool = z3fold_create_pool(gfp, zpool_ops ? &z3fold_zpool_ops : NULL);
	if (pool) {
		pool->zpool = zpool;
		pool->zpool_ops = zpool_ops;
	}
	return pool;
}

static void z3fold_zpool_destroy(void *pool)
{
	z3fold_destroy_pool(pool);
}

static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	return z3fold_alloc(pool, size, gfp, handle);
}
static void z3fold_zpool_free(void *pool, unsigned long handle)
{
	z3fold_free(pool, handle);
}

static int z3fold_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	unsigned int total = 0;
	int ret = -EINVAL;

	while (total < pages) {
		ret = z3fold_reclaim_page(pool, 8);
		if (ret < 0)
			break;
		total++;
	}

	if (reclaimed)
		*reclaimed = total;

	return ret;
}

static void *z3fold_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	return z3fold_map(pool, handle);
}
static void z3fold_zpool_unmap(void *pool, unsigned long handle)
{
	z3fold_unmap(pool, handle);
}

static u64 z3fold_zpool_total_size(void *pool)
{
	return z3fold_get_pool_size(pool) * PAGE_SIZE;
}

static struct zpool_driver z3fold_zpool_driver = {
	.type =		"z3fold",
	.owner =	THIS_MODULE,
	.create =	z3fold_zpool_create,
	.destroy =	z3fold_zpool_destroy,
	.malloc =	z3fold_zpool_malloc,
	.free =		z3fold_zpool_free,
	.shrink =	z3fold_zpool_shrink,
	.map =		z3fold_zpool_map,
	.unmap =	z3fold_zpool_unmap,
	.total_size =	z3fold_zpool_total_size,
};

MODULE_ALIAS("zpool-z3fold");

static int __init init_z3fold(void)
{
	/* Make sure the z3fold header is not larger than the page size */
	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
	zpool_register_driver(&z3fold_zpool_driver);

	return 0;
}

static void __exit exit_z3fold(void)
{
	zpool_unregister_driver(&z3fold_zpool_driver);
}

module_init(init_z3fold);
module_exit(exit_z3fold);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");