Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 *  linux/mm/mempool.c
 *
 *  memory buffer pool support. Such pools are mostly used
 *  for guaranteed, deadlock-free memory allocations during
 *  extreme VM load.
 *
 *  started by Ingo Molnar, Copyright (C) 2001
 *  debugging by David Rientjes, Copyright (C) 2015
 */

#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include "slab.h"

#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
static void poison_error(mempool_t *pool, void *element, size_t size,
			 size_t byte)
{
	const int nr = pool->curr_nr;
	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
	int i;

	pr_err("BUG: mempool element poison mismatch\n");
	pr_err("Mempool %p size %zu\n", pool, size);
	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
	for (i = start; i < end; i++)
		pr_cont("%x ", *(u8 *)(element + i));
	pr_cont("%s\n", end < size ? "..." : "");
	dump_stack();
}

static void __check_element(mempool_t *pool, void *element, size_t size)
{
	u8 *obj = element;
	size_t i;

	for (i = 0; i < size; i++) {
		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;

		if (obj[i] != exp) {
			poison_error(pool, element, size, i);
			return;
		}
	}
	memset(obj, POISON_INUSE, size);
}

static void check_element(mempool_t *pool, void *element)
{
	/* Mempools backed by slab allocator */
	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
		__check_element(pool, element, ksize(element));

	/* Mempools backed by page allocator */
	if (pool->free == mempool_free_pages) {
		int order = (int)(long)pool->pool_data;
		void *addr = kmap_atomic((struct page *)element);

		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
		kunmap_atomic(addr);
	}
}

static void __poison_element(void *element, size_t size)
{
	u8 *obj = element;

	memset(obj, POISON_FREE, size - 1);
	obj[size - 1] = POISON_END;
}

static void poison_element(mempool_t *pool, void *element)
{
	/* Mempools backed by slab allocator */
	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
		__poison_element(element, ksize(element));

	/* Mempools backed by page allocator */
	if (pool->alloc == mempool_alloc_pages) {
		int order = (int)(long)pool->pool_data;
		void *addr = kmap_atomic((struct page *)element);

		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
		kunmap_atomic(addr);
	}
}
#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
static inline void check_element(mempool_t *pool, void *element)
{
}
static inline void poison_element(mempool_t *pool, void *element)
{
}
#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */

static void kasan_poison_element(mempool_t *pool, void *element)
{
	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
		kasan_poison_kfree(element);
	if (pool->alloc == mempool_alloc_pages)
		kasan_free_pages(element, (unsigned long)pool->pool_data);
}

static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
{
	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
		kasan_unpoison_slab(element);
	if (pool->alloc == mempool_alloc_pages)
		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
}

static void add_element(mempool_t *pool, void *element)
{
	BUG_ON(pool->curr_nr >= pool->min_nr);
	poison_element(pool, element);
	kasan_poison_element(pool, element);
	pool->elements[pool->curr_nr++] = element;
}

static void *remove_element(mempool_t *pool, gfp_t flags)
{
	void *element = pool->elements[--pool->curr_nr];

	BUG_ON(pool->curr_nr < 0);
	kasan_unpoison_element(pool, element, flags);
	check_element(pool, element);
	return element;
}

/**
 * mempool_destroy - deallocate a memory pool
 * @pool:      pointer to the memory pool which was allocated via
 *             mempool_create().
 *
 * Free all reserved elements in @pool and @pool itself.  This function
 * only sleeps if the free_fn() function sleeps.
 */
void mempool_destroy(mempool_t *pool)
{
	if (unlikely(!pool))
		return;

	while (pool->curr_nr) {
		void *element = remove_element(pool, GFP_KERNEL);
		pool->free(element, pool->pool_data);
	}
	kfree(pool->elements);
	kfree(pool);
}
EXPORT_SYMBOL(mempool_destroy);

/**
 * mempool_create - create a memory pool
 * @min_nr:    the minimum number of elements guaranteed to be
 *             allocated for this pool.
 * @alloc_fn:  user-defined element-allocation function.
 * @free_fn:   user-defined element-freeing function.
 * @pool_data: optional private data available to the user-defined functions.
 *
 * this function creates and allocates a guaranteed size, preallocated
 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 * functions might sleep - as long as the mempool_alloc() function is not called
 * from IRQ contexts.
 */
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
				mempool_free_t *free_fn, void *pool_data)
{
	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
				   GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_create);

mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
			       mempool_free_t *free_fn, void *pool_data,
			       gfp_t gfp_mask, int node_id)
{
	mempool_t *pool;
	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
	if (!pool)
		return NULL;
	pool->elements = kmalloc_node(min_nr * sizeof(void *),
				      gfp_mask, node_id);
	if (!pool->elements) {
		kfree(pool);
		return NULL;
	}
	spin_lock_init(&pool->lock);
	pool->min_nr = min_nr;
	pool->pool_data = pool_data;
	init_waitqueue_head(&pool->wait);
	pool->alloc = alloc_fn;
	pool->free = free_fn;

	/*
	 * First pre-allocate the guaranteed number of buffers.
	 */
	while (pool->curr_nr < pool->min_nr) {
		void *element;

		element = pool->alloc(gfp_mask, pool->pool_data);
		if (unlikely(!element)) {
			mempool_destroy(pool);
			return NULL;
		}
		add_element(pool, element);
	}
	return pool;
}
EXPORT_SYMBOL(mempool_create_node);

/**
 * mempool_resize - resize an existing memory pool
 * @pool:       pointer to the memory pool which was allocated via
 *              mempool_create().
 * @new_min_nr: the new minimum number of elements guaranteed to be
 *              allocated for this pool.
 *
 * This function shrinks/grows the pool. In the case of growing,
 * it cannot be guaranteed that the pool will be grown to the new
 * size immediately, but new mempool_free() calls will refill it.
 * This function may sleep.
 *
 * Note, the caller must guarantee that no mempool_destroy is called
 * while this function is running. mempool_alloc() & mempool_free()
 * might be called (eg. from IRQ contexts) while this function executes.
 */
int mempool_resize(mempool_t *pool, int new_min_nr)
{
	void *element;
	void **new_elements;
	unsigned long flags;

	BUG_ON(new_min_nr <= 0);
	might_sleep();

	spin_lock_irqsave(&pool->lock, flags);
	if (new_min_nr <= pool->min_nr) {
		while (new_min_nr < pool->curr_nr) {
			element = remove_element(pool, GFP_KERNEL);
			spin_unlock_irqrestore(&pool->lock, flags);
			pool->free(element, pool->pool_data);
			spin_lock_irqsave(&pool->lock, flags);
		}
		pool->min_nr = new_min_nr;
		goto out_unlock;
	}
	spin_unlock_irqrestore(&pool->lock, flags);

	/* Grow the pool */
	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
				     GFP_KERNEL);
	if (!new_elements)
		return -ENOMEM;

	spin_lock_irqsave(&pool->lock, flags);
	if (unlikely(new_min_nr <= pool->min_nr)) {
		/* Raced, other resize will do our work */
		spin_unlock_irqrestore(&pool->lock, flags);
		kfree(new_elements);
		goto out;
	}
	memcpy(new_elements, pool->elements,
			pool->curr_nr * sizeof(*new_elements));
	kfree(pool->elements);
	pool->elements = new_elements;
	pool->min_nr = new_min_nr;

	while (pool->curr_nr < pool->min_nr) {
		spin_unlock_irqrestore(&pool->lock, flags);
		element = pool->alloc(GFP_KERNEL, pool->pool_data);
		if (!element)
			goto out;
		spin_lock_irqsave(&pool->lock, flags);
		if (pool->curr_nr < pool->min_nr) {
			add_element(pool, element);
		} else {
			spin_unlock_irqrestore(&pool->lock, flags);
			pool->free(element, pool->pool_data);	/* Raced */
			goto out;
		}
	}
out_unlock:
	spin_unlock_irqrestore(&pool->lock, flags);
out:
	return 0;
}
EXPORT_SYMBOL(mempool_resize);

/**
 * mempool_alloc - allocate an element from a specific memory pool
 * @pool:      pointer to the memory pool which was allocated via
 *             mempool_create().
 * @gfp_mask:  the usual allocation bitmask.
 *
 * this function only sleeps if the alloc_fn() function sleeps or
 * returns NULL. Note that due to preallocation, this function
 * *never* fails when called from process contexts. (it might
 * fail if called from an IRQ context.)
 * Note: using __GFP_ZERO is not supported.
 */
void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
{
	void *element;
	unsigned long flags;
	wait_queue_t wait;
	gfp_t gfp_temp;

	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);

	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
	gfp_mask |= __GFP_NOWARN;	/* failures are OK */

	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);

repeat_alloc:

	element = pool->alloc(gfp_temp, pool->pool_data);
	if (likely(element != NULL))
		return element;

	spin_lock_irqsave(&pool->lock, flags);
	if (likely(pool->curr_nr)) {
		element = remove_element(pool, gfp_temp);
		spin_unlock_irqrestore(&pool->lock, flags);
		/* paired with rmb in mempool_free(), read comment there */
		smp_wmb();
		/*
		 * Update the allocation stack trace as this is more useful
		 * for debugging.
		 */
		kmemleak_update_trace(element);
		return element;
	}

	/*
	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
	 * alloc failed with that and @pool was empty, retry immediately.
	 */
	if (gfp_temp != gfp_mask) {
		spin_unlock_irqrestore(&pool->lock, flags);
		gfp_temp = gfp_mask;
		goto repeat_alloc;
	}

	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
		spin_unlock_irqrestore(&pool->lock, flags);
		return NULL;
	}

	/* Let's wait for someone else to return an element to @pool */
	init_wait(&wait);
	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);

	spin_unlock_irqrestore(&pool->lock, flags);

	/*
	 * FIXME: this should be io_schedule().  The timeout is there as a
	 * workaround for some DM problems in 2.6.18.
	 */
	io_schedule_timeout(5*HZ);

	finish_wait(&pool->wait, &wait);
	goto repeat_alloc;
}
EXPORT_SYMBOL(mempool_alloc);

/**
 * mempool_free - return an element to the pool.
 * @element:   pool element pointer.
 * @pool:      pointer to the memory pool which was allocated via
 *             mempool_create().
 *
 * this function only sleeps if the free_fn() function sleeps.
 */
void mempool_free(void *element, mempool_t *pool)
{
	unsigned long flags;

	if (unlikely(element == NULL))
		return;

	/*
	 * Paired with the wmb in mempool_alloc().  The preceding read is
	 * for @element and the following @pool->curr_nr.  This ensures
	 * that the visible value of @pool->curr_nr is from after the
	 * allocation of @element.  This is necessary for fringe cases
	 * where @element was passed to this task without going through
	 * barriers.
	 *
	 * For example, assume @p is %NULL at the beginning and one task
	 * performs "p = mempool_alloc(...);" while another task is doing
	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
	 * may end up using curr_nr value which is from before allocation
	 * of @p without the following rmb.
	 */
	smp_rmb();

	/*
	 * For correctness, we need a test which is guaranteed to trigger
	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
	 * without locking achieves that and refilling as soon as possible
	 * is desirable.
	 *
	 * Because curr_nr visible here is always a value after the
	 * allocation of @element, any task which decremented curr_nr below
	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
	 * incremented to min_nr afterwards.  If curr_nr gets incremented
	 * to min_nr after the allocation of @element, the elements
	 * allocated after that are subject to the same guarantee.
	 *
	 * Waiters happen iff curr_nr is 0 and the above guarantee also
	 * ensures that there will be frees which return elements to the
	 * pool waking up the waiters.
	 */
	if (unlikely(pool->curr_nr < pool->min_nr)) {
		spin_lock_irqsave(&pool->lock, flags);
		if (likely(pool->curr_nr < pool->min_nr)) {
			add_element(pool, element);
			spin_unlock_irqrestore(&pool->lock, flags);
			wake_up(&pool->wait);
			return;
		}
		spin_unlock_irqrestore(&pool->lock, flags);
	}
	pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);

/*
 * A commonly used alloc and free fn.
 */
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
	struct kmem_cache *mem = pool_data;
	VM_BUG_ON(mem->ctor);
	return kmem_cache_alloc(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);

void mempool_free_slab(void *element, void *pool_data)
{
	struct kmem_cache *mem = pool_data;
	kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);

/*
 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
 * specified by pool_data
 */
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
{
	size_t size = (size_t)pool_data;
	return kmalloc(size, gfp_mask);
}
EXPORT_SYMBOL(mempool_kmalloc);

void mempool_kfree(void *element, void *pool_data)
{
	kfree(element);
}
EXPORT_SYMBOL(mempool_kfree);

/*
 * A simple mempool-backed page allocator that allocates pages
 * of the order specified by pool_data.
 */
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
{
	int order = (int)(long)pool_data;
	return alloc_pages(gfp_mask, order);
}
EXPORT_SYMBOL(mempool_alloc_pages);

void mempool_free_pages(void *element, void *pool_data)
{
	int order = (int)(long)pool_data;
	__free_pages(element, order);
}
EXPORT_SYMBOL(mempool_free_pages);