free electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
/*
 * Copyright (c) 2003-2013 Broadcom Corporation
 *
 * Copyright (c) 2009-2010 Micron Technology, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include <linux/spi/spi.h>

#include "mt29f_spinand.h"

#define BUFSIZE (10 * 64 * 2048)
#define CACHE_BUF 2112
/*
 * OOB area specification layout:  Total 32 available free bytes.
 */

static inline struct spinand_state *mtd_to_state(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct spinand_info *info = nand_get_controller_data(chip);
	struct spinand_state *state = info->priv;

	return state;
}

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int enable_hw_ecc;
static int enable_read_hw_ecc;

static int spinand_ooblayout_64_ecc(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oobregion)
{
	if (section > 3)
		return -ERANGE;

	oobregion->offset = (section * 16) + 1;
	oobregion->length = 6;

	return 0;
}

static int spinand_ooblayout_64_free(struct mtd_info *mtd, int section,
				     struct mtd_oob_region *oobregion)
{
	if (section > 3)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;
	oobregion->length = 8;

	return 0;
}

static const struct mtd_ooblayout_ops spinand_oob_64_ops = {
	.ecc = spinand_ooblayout_64_ecc,
	.free = spinand_ooblayout_64_free,
};
#endif

/**
 * spinand_cmd - process a command to send to the SPI Nand
 * Description:
 *    Set up the command buffer to send to the SPI controller.
 *    The command buffer has to initialized to 0.
 */

static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
{
	struct spi_message message;
	struct spi_transfer x[4];
	u8 dummy = 0xff;

	spi_message_init(&message);
	memset(x, 0, sizeof(x));

	x[0].len = 1;
	x[0].tx_buf = &cmd->cmd;
	spi_message_add_tail(&x[0], &message);

	if (cmd->n_addr) {
		x[1].len = cmd->n_addr;
		x[1].tx_buf = cmd->addr;
		spi_message_add_tail(&x[1], &message);
	}

	if (cmd->n_dummy) {
		x[2].len = cmd->n_dummy;
		x[2].tx_buf = &dummy;
		spi_message_add_tail(&x[2], &message);
	}

	if (cmd->n_tx) {
		x[3].len = cmd->n_tx;
		x[3].tx_buf = cmd->tx_buf;
		spi_message_add_tail(&x[3], &message);
	}

	if (cmd->n_rx) {
		x[3].len = cmd->n_rx;
		x[3].rx_buf = cmd->rx_buf;
		spi_message_add_tail(&x[3], &message);
	}

	return spi_sync(spi, &message);
}

/**
 * spinand_read_id - Read SPI Nand ID
 * Description:
 *    read two ID bytes from the SPI Nand device
 */
static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
{
	int retval;
	u8 nand_id[3];
	struct spinand_cmd cmd = {0};

	cmd.cmd = CMD_READ_ID;
	cmd.n_rx = 3;
	cmd.rx_buf = &nand_id[0];

	retval = spinand_cmd(spi_nand, &cmd);
	if (retval < 0) {
		dev_err(&spi_nand->dev, "error %d reading id\n", retval);
		return retval;
	}
	id[0] = nand_id[1];
	id[1] = nand_id[2];
	return retval;
}

/**
 * spinand_read_status - send command 0xf to the SPI Nand status register
 * Description:
 *    After read, write, or erase, the Nand device is expected to set the
 *    busy status.
 *    This function is to allow reading the status of the command: read,
 *    write, and erase.
 *    Once the status turns to be ready, the other status bits also are
 *    valid status bits.
 */
static int spinand_read_status(struct spi_device *spi_nand, u8 *status)
{
	struct spinand_cmd cmd = {0};
	int ret;

	cmd.cmd = CMD_READ_REG;
	cmd.n_addr = 1;
	cmd.addr[0] = REG_STATUS;
	cmd.n_rx = 1;
	cmd.rx_buf = status;

	ret = spinand_cmd(spi_nand, &cmd);
	if (ret < 0)
		dev_err(&spi_nand->dev, "err: %d read status register\n", ret);

	return ret;
}

#define MAX_WAIT_JIFFIES  (40 * HZ)
static int wait_till_ready(struct spi_device *spi_nand)
{
	unsigned long deadline;
	int retval;
	u8 stat = 0;

	deadline = jiffies + MAX_WAIT_JIFFIES;
	do {
		retval = spinand_read_status(spi_nand, &stat);
		if (retval < 0)
			return -1;
		if (!(stat & 0x1))
			break;

		cond_resched();
	} while (!time_after_eq(jiffies, deadline));

	if ((stat & 0x1) == 0)
		return 0;

	return -1;
}

/**
 * spinand_get_otp - send command 0xf to read the SPI Nand OTP register
 * Description:
 *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
 *   Enable chip internal ECC, set the bit to 1
 *   Disable chip internal ECC, clear the bit to 0
 */
static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
{
	struct spinand_cmd cmd = {0};
	int retval;

	cmd.cmd = CMD_READ_REG;
	cmd.n_addr = 1;
	cmd.addr[0] = REG_OTP;
	cmd.n_rx = 1;
	cmd.rx_buf = otp;

	retval = spinand_cmd(spi_nand, &cmd);
	if (retval < 0)
		dev_err(&spi_nand->dev, "error %d get otp\n", retval);
	return retval;
}

/**
 * spinand_set_otp - send command 0x1f to write the SPI Nand OTP register
 * Description:
 *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
 *   Enable chip internal ECC, set the bit to 1
 *   Disable chip internal ECC, clear the bit to 0
 */
static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
{
	int retval;
	struct spinand_cmd cmd = {0};

	cmd.cmd = CMD_WRITE_REG;
	cmd.n_addr = 1;
	cmd.addr[0] = REG_OTP;
	cmd.n_tx = 1;
	cmd.tx_buf = otp;

	retval = spinand_cmd(spi_nand, &cmd);
	if (retval < 0)
		dev_err(&spi_nand->dev, "error %d set otp\n", retval);

	return retval;
}

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
/**
 * spinand_enable_ecc - send command 0x1f to write the SPI Nand OTP register
 * Description:
 *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
 *   Enable chip internal ECC, set the bit to 1
 *   Disable chip internal ECC, clear the bit to 0
 */
static int spinand_enable_ecc(struct spi_device *spi_nand)
{
	int retval;
	u8 otp = 0;

	retval = spinand_get_otp(spi_nand, &otp);
	if (retval < 0)
		return retval;

	if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK)
		return 0;
	otp |= OTP_ECC_MASK;
	retval = spinand_set_otp(spi_nand, &otp);
	if (retval < 0)
		return retval;
	return spinand_get_otp(spi_nand, &otp);
}
#endif

static int spinand_disable_ecc(struct spi_device *spi_nand)
{
	int retval;
	u8 otp = 0;

	retval = spinand_get_otp(spi_nand, &otp);
	if (retval < 0)
		return retval;

	if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
		otp &= ~OTP_ECC_MASK;
		retval = spinand_set_otp(spi_nand, &otp);
		if (retval < 0)
			return retval;
		return spinand_get_otp(spi_nand, &otp);
	}
	return 0;
}

/**
 * spinand_write_enable - send command 0x06 to enable write or erase the
 * Nand cells
 * Description:
 *   Before write and erase the Nand cells, the write enable has to be set.
 *   After the write or erase, the write enable bit is automatically
 *   cleared (status register bit 2)
 *   Set the bit 2 of the status register has the same effect
 */
static int spinand_write_enable(struct spi_device *spi_nand)
{
	struct spinand_cmd cmd = {0};

	cmd.cmd = CMD_WR_ENABLE;
	return spinand_cmd(spi_nand, &cmd);
}

static int spinand_read_page_to_cache(struct spi_device *spi_nand, u16 page_id)
{
	struct spinand_cmd cmd = {0};
	u16 row;

	row = page_id;
	cmd.cmd = CMD_READ;
	cmd.n_addr = 3;
	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
	cmd.addr[2] = (u8)(row & 0x00ff);

	return spinand_cmd(spi_nand, &cmd);
}

/**
 * spinand_read_from_cache - send command 0x03 to read out the data from the
 * cache register (2112 bytes max)
 * Description:
 *   The read can specify 1 to 2112 bytes of data read at the corresponding
 *   locations.
 *   No tRd delay.
 */
static int spinand_read_from_cache(struct spi_device *spi_nand, u16 page_id,
				   u16 byte_id, u16 len, u8 *rbuf)
{
	struct spinand_cmd cmd = {0};
	u16 column;

	column = byte_id;
	cmd.cmd = CMD_READ_RDM;
	cmd.n_addr = 3;
	cmd.addr[0] = (u8)((column & 0xff00) >> 8);
	cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
	cmd.addr[1] = (u8)(column & 0x00ff);
	cmd.addr[2] = (u8)(0xff);
	cmd.n_dummy = 0;
	cmd.n_rx = len;
	cmd.rx_buf = rbuf;

	return spinand_cmd(spi_nand, &cmd);
}

/**
 * spinand_read_page - read a page
 * @page_id: the physical page number
 * @offset:  the location from 0 to 2111
 * @len:     number of bytes to read
 * @rbuf:    read buffer to hold @len bytes
 *
 * Description:
 *   The read includes two commands to the Nand - 0x13 and 0x03 commands
 *   Poll to read status to wait for tRD time.
 */
static int spinand_read_page(struct spi_device *spi_nand, u16 page_id,
			     u16 offset, u16 len, u8 *rbuf)
{
	int ret;
	u8 status = 0;

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	if (enable_read_hw_ecc) {
		if (spinand_enable_ecc(spi_nand) < 0)
			dev_err(&spi_nand->dev, "enable HW ECC failed!");
	}
#endif
	ret = spinand_read_page_to_cache(spi_nand, page_id);
	if (ret < 0)
		return ret;

	if (wait_till_ready(spi_nand))
		dev_err(&spi_nand->dev, "WAIT timedout!!!\n");

	while (1) {
		ret = spinand_read_status(spi_nand, &status);
		if (ret < 0) {
			dev_err(&spi_nand->dev,
				"err %d read status register\n", ret);
			return ret;
		}

		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
			if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
				dev_err(&spi_nand->dev, "ecc error, page=%d\n",
					page_id);
				return 0;
			}
			break;
		}
	}

	ret = spinand_read_from_cache(spi_nand, page_id, offset, len, rbuf);
	if (ret < 0) {
		dev_err(&spi_nand->dev, "read from cache failed!!\n");
		return ret;
	}

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	if (enable_read_hw_ecc) {
		ret = spinand_disable_ecc(spi_nand);
		if (ret < 0) {
			dev_err(&spi_nand->dev, "disable ecc failed!!\n");
			return ret;
		}
		enable_read_hw_ecc = 0;
	}
#endif
	return ret;
}

/**
 * spinand_program_data_to_cache - write a page to cache
 * @byte_id: the location to write to the cache
 * @len:     number of bytes to write
 * @wbuf:    write buffer holding @len bytes
 *
 * Description:
 *   The write command used here is 0x84--indicating that the cache is
 *   not cleared first.
 *   Since it is writing the data to cache, there is no tPROG time.
 */
static int spinand_program_data_to_cache(struct spi_device *spi_nand,
					 u16 page_id, u16 byte_id,
					 u16 len, u8 *wbuf)
{
	struct spinand_cmd cmd = {0};
	u16 column;

	column = byte_id;
	cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
	cmd.n_addr = 2;
	cmd.addr[0] = (u8)((column & 0xff00) >> 8);
	cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
	cmd.addr[1] = (u8)(column & 0x00ff);
	cmd.n_tx = len;
	cmd.tx_buf = wbuf;

	return spinand_cmd(spi_nand, &cmd);
}

/**
 * spinand_program_execute - write a page from cache to the Nand array
 * @page_id: the physical page location to write the page.
 *
 * Description:
 *   The write command used here is 0x10--indicating the cache is writing to
 *   the Nand array.
 *   Need to wait for tPROG time to finish the transaction.
 */
static int spinand_program_execute(struct spi_device *spi_nand, u16 page_id)
{
	struct spinand_cmd cmd = {0};
	u16 row;

	row = page_id;
	cmd.cmd = CMD_PROG_PAGE_EXC;
	cmd.n_addr = 3;
	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
	cmd.addr[2] = (u8)(row & 0x00ff);

	return spinand_cmd(spi_nand, &cmd);
}

/**
 * spinand_program_page - write a page
 * @page_id: the physical page location to write the page.
 * @offset:  the location from the cache starting from 0 to 2111
 * @len:     the number of bytes to write
 * @buf:     the buffer holding @len bytes
 *
 * Description:
 *   The commands used here are 0x06, 0x84, and 0x10--indicating that
 *   the write enable is first sent, the write cache command, and the
 *   write execute command.
 *   Poll to wait for the tPROG time to finish the transaction.
 */
static int spinand_program_page(struct spi_device *spi_nand,
				u16 page_id, u16 offset, u16 len, u8 *buf)
{
	int retval;
	u8 status = 0;
	u8 *wbuf;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	unsigned int i, j;

	wbuf = devm_kzalloc(&spi_nand->dev, CACHE_BUF, GFP_KERNEL);
	if (!wbuf)
		return -ENOMEM;

	enable_read_hw_ecc = 0;
	spinand_read_page(spi_nand, page_id, 0, CACHE_BUF, wbuf);

	for (i = offset, j = 0; i < len; i++, j++)
		wbuf[i] &= buf[j];

	if (enable_hw_ecc) {
		retval = spinand_enable_ecc(spi_nand);
		if (retval < 0) {
			dev_err(&spi_nand->dev, "enable ecc failed!!\n");
			return retval;
		}
	}
#else
	wbuf = buf;
#endif
	retval = spinand_write_enable(spi_nand);
	if (retval < 0) {
		dev_err(&spi_nand->dev, "write enable failed!!\n");
		return retval;
	}
	if (wait_till_ready(spi_nand))
		dev_err(&spi_nand->dev, "wait timedout!!!\n");

	retval = spinand_program_data_to_cache(spi_nand, page_id,
					       offset, len, wbuf);
	if (retval < 0)
		return retval;
	retval = spinand_program_execute(spi_nand, page_id);
	if (retval < 0)
		return retval;
	while (1) {
		retval = spinand_read_status(spi_nand, &status);
		if (retval < 0) {
			dev_err(&spi_nand->dev,
				"error %d reading status register\n", retval);
			return retval;
		}

		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
			if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
				dev_err(&spi_nand->dev,
					"program error, page %d\n", page_id);
				return -1;
			}
			break;
		}
	}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	if (enable_hw_ecc) {
		retval = spinand_disable_ecc(spi_nand);
		if (retval < 0) {
			dev_err(&spi_nand->dev, "disable ecc failed!!\n");
			return retval;
		}
		enable_hw_ecc = 0;
	}
#endif

	return 0;
}

/**
 * spinand_erase_block_erase - erase a page
 * @block_id: the physical block location to erase.
 *
 * Description:
 *   The command used here is 0xd8--indicating an erase command to erase
 *   one block--64 pages
 *   Need to wait for tERS.
 */
static int spinand_erase_block_erase(struct spi_device *spi_nand, u16 block_id)
{
	struct spinand_cmd cmd = {0};
	u16 row;

	row = block_id;
	cmd.cmd = CMD_ERASE_BLK;
	cmd.n_addr = 3;
	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
	cmd.addr[2] = (u8)(row & 0x00ff);

	return spinand_cmd(spi_nand, &cmd);
}

/**
 * spinand_erase_block - erase a page
 * @block_id: the physical block location to erase.
 *
 * Description:
 *   The commands used here are 0x06 and 0xd8--indicating an erase
 *   command to erase one block--64 pages
 *   It will first to enable the write enable bit (0x06 command),
 *   and then send the 0xd8 erase command
 *   Poll to wait for the tERS time to complete the tranaction.
 */
static int spinand_erase_block(struct spi_device *spi_nand, u16 block_id)
{
	int retval;
	u8 status = 0;

	retval = spinand_write_enable(spi_nand);
	if (wait_till_ready(spi_nand))
		dev_err(&spi_nand->dev, "wait timedout!!!\n");

	retval = spinand_erase_block_erase(spi_nand, block_id);
	while (1) {
		retval = spinand_read_status(spi_nand, &status);
		if (retval < 0) {
			dev_err(&spi_nand->dev,
				"error %d reading status register\n", retval);
			return retval;
		}

		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
			if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
				dev_err(&spi_nand->dev,
					"erase error, block %d\n", block_id);
				return -1;
			}
			break;
		}
	}
	return 0;
}

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int spinand_write_page_hwecc(struct mtd_info *mtd,
				    struct nand_chip *chip,
				    const u8 *buf, int oob_required,
				    int page)
{
	const u8 *p = buf;
	int eccsize = chip->ecc.size;
	int eccsteps = chip->ecc.steps;

	enable_hw_ecc = 1;
	chip->write_buf(mtd, p, eccsize * eccsteps);
	return 0;
}

static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				   u8 *buf, int oob_required, int page)
{
	int retval;
	u8 status;
	u8 *p = buf;
	int eccsize = chip->ecc.size;
	int eccsteps = chip->ecc.steps;
	struct spinand_info *info = nand_get_controller_data(chip);

	enable_read_hw_ecc = 1;

	chip->read_buf(mtd, p, eccsize * eccsteps);
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	while (1) {
		retval = spinand_read_status(info->spi, &status);
		if (retval < 0) {
			dev_err(&mtd->dev,
				"error %d reading status register\n", retval);
			return retval;
		}

		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
			if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
				pr_info("spinand: ECC error\n");
				mtd->ecc_stats.failed++;
			} else if ((status & STATUS_ECC_MASK) ==
					STATUS_ECC_1BIT_CORRECTED)
				mtd->ecc_stats.corrected++;
			break;
		}
	}
	return 0;
}
#endif

static void spinand_select_chip(struct mtd_info *mtd, int dev)
{
}

static u8 spinand_read_byte(struct mtd_info *mtd)
{
	struct spinand_state *state = mtd_to_state(mtd);
	u8 data;

	data = state->buf[state->buf_ptr];
	state->buf_ptr++;
	return data;
}

static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct spinand_info *info = nand_get_controller_data(chip);

	unsigned long timeo = jiffies;
	int retval, state = chip->state;
	u8 status;

	if (state == FL_ERASING)
		timeo += (HZ * 400) / 1000;
	else
		timeo += (HZ * 20) / 1000;

	while (time_before(jiffies, timeo)) {
		retval = spinand_read_status(info->spi, &status);
		if (retval < 0) {
			dev_err(&mtd->dev,
				"error %d reading status register\n", retval);
			return retval;
		}

		if ((status & STATUS_OIP_MASK) == STATUS_READY)
			return 0;

		cond_resched();
	}
	return 0;
}

static void spinand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct spinand_state *state = mtd_to_state(mtd);

	memcpy(state->buf + state->buf_ptr, buf, len);
	state->buf_ptr += len;
}

static void spinand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct spinand_state *state = mtd_to_state(mtd);

	memcpy(buf, state->buf + state->buf_ptr, len);
	state->buf_ptr += len;
}

/*
 * spinand_reset- send RESET command "0xff" to the Nand device.
 */
static void spinand_reset(struct spi_device *spi_nand)
{
	struct spinand_cmd cmd = {0};

	cmd.cmd = CMD_RESET;

	if (spinand_cmd(spi_nand, &cmd) < 0)
		pr_info("spinand reset failed!\n");

	/* elapse 1ms before issuing any other command */
	usleep_range(1000, 2000);

	if (wait_till_ready(spi_nand))
		dev_err(&spi_nand->dev, "wait timedout!\n");
}

static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
			    int column, int page)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct spinand_info *info = nand_get_controller_data(chip);
	struct spinand_state *state = info->priv;

	switch (command) {
	/*
	 * READ0 - read in first  0x800 bytes
	 */
	case NAND_CMD_READ1:
	case NAND_CMD_READ0:
		state->buf_ptr = 0;
		spinand_read_page(info->spi, page, 0x0, 0x840, state->buf);
		break;
	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
		state->buf_ptr = 0;
		spinand_read_page(info->spi, page, 0x800, 0x40, state->buf);
		break;
	case NAND_CMD_RNDOUT:
		state->buf_ptr = column;
		break;
	case NAND_CMD_READID:
		state->buf_ptr = 0;
		spinand_read_id(info->spi, state->buf);
		break;
	case NAND_CMD_PARAM:
		state->buf_ptr = 0;
		break;
	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
		spinand_erase_block(info->spi, page);
		break;
	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
		break;
	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN:
		state->col = column;
		state->row = page;
		state->buf_ptr = 0;
		break;
	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG:
		spinand_program_page(info->spi, state->row, state->col,
				     state->buf_ptr, state->buf);
		break;
	case NAND_CMD_STATUS:
		spinand_get_otp(info->spi, state->buf);
		if (!(state->buf[0] & 0x80))
			state->buf[0] = 0x80;
		state->buf_ptr = 0;
		break;
	/* RESET command */
	case NAND_CMD_RESET:
		if (wait_till_ready(info->spi))
			dev_err(&info->spi->dev, "WAIT timedout!!!\n");
		/* a minimum of 250us must elapse before issuing RESET cmd*/
		usleep_range(250, 1000);
		spinand_reset(info->spi);
		break;
	default:
		dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command);
	}
}

/**
 * spinand_lock_block - send write register 0x1f command to the Nand device
 *
 * Description:
 *    After power up, all the Nand blocks are locked.  This function allows
 *    one to unlock the blocks, and so it can be written or erased.
 */
static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
{
	struct spinand_cmd cmd = {0};
	int ret;
	u8 otp = 0;

	ret = spinand_get_otp(spi_nand, &otp);

	cmd.cmd = CMD_WRITE_REG;
	cmd.n_addr = 1;
	cmd.addr[0] = REG_BLOCK_LOCK;
	cmd.n_tx = 1;
	cmd.tx_buf = &lock;

	ret = spinand_cmd(spi_nand, &cmd);
	if (ret < 0)
		dev_err(&spi_nand->dev, "error %d lock block\n", ret);

	return ret;
}

/**
 * spinand_probe - [spinand Interface]
 * @spi_nand: registered device driver.
 *
 * Description:
 *   Set up the device driver parameters to make the device available.
 */
static int spinand_probe(struct spi_device *spi_nand)
{
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct spinand_info *info;
	struct spinand_state *state;

	info  = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_info),
			     GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	info->spi = spi_nand;

	spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);

	state = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_state),
			     GFP_KERNEL);
	if (!state)
		return -ENOMEM;

	info->priv	= state;
	state->buf_ptr	= 0;
	state->buf	= devm_kzalloc(&spi_nand->dev, BUFSIZE, GFP_KERNEL);
	if (!state->buf)
		return -ENOMEM;

	chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip),
			    GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	chip->ecc.mode	= NAND_ECC_HW;
	chip->ecc.size	= 0x200;
	chip->ecc.bytes	= 0x6;
	chip->ecc.steps	= 0x4;

	chip->ecc.strength = 1;
	chip->ecc.total	= chip->ecc.steps * chip->ecc.bytes;
	chip->ecc.read_page = spinand_read_page_hwecc;
	chip->ecc.write_page = spinand_write_page_hwecc;
#else
	chip->ecc.mode	= NAND_ECC_SOFT;
	chip->ecc.algo	= NAND_ECC_HAMMING;
	if (spinand_disable_ecc(spi_nand) < 0)
		dev_info(&spi_nand->dev, "%s: disable ecc failed!\n",
			 __func__);
#endif

	nand_set_flash_node(chip, spi_nand->dev.of_node);
	nand_set_controller_data(chip, info);
	chip->read_buf	= spinand_read_buf;
	chip->write_buf	= spinand_write_buf;
	chip->read_byte	= spinand_read_byte;
	chip->cmdfunc	= spinand_cmdfunc;
	chip->waitfunc	= spinand_wait;
	chip->options	|= NAND_CACHEPRG;
	chip->select_chip = spinand_select_chip;

	mtd = nand_to_mtd(chip);

	dev_set_drvdata(&spi_nand->dev, mtd);

	mtd->dev.parent = &spi_nand->dev;
	mtd->oobsize = 64;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
	mtd_set_ooblayout(mtd, &spinand_oob_64_ops);
#endif

	if (nand_scan(mtd, 1))
		return -ENXIO;

	return mtd_device_register(mtd, NULL, 0);
}

/**
 * spinand_remove - remove the device driver
 * @spi: the spi device.
 *
 * Description:
 *   Remove the device driver parameters and free up allocated memories.
 */
static int spinand_remove(struct spi_device *spi)
{
	mtd_device_unregister(dev_get_drvdata(&spi->dev));

	return 0;
}

static const struct of_device_id spinand_dt[] = {
	{ .compatible = "spinand,mt29f", },
	{}
};
MODULE_DEVICE_TABLE(of, spinand_dt);

/*
 * Device name structure description
 */
static struct spi_driver spinand_driver = {
	.driver = {
		.name		= "mt29f",
		.of_match_table	= spinand_dt,
	},
	.probe		= spinand_probe,
	.remove		= spinand_remove,
};

module_spi_driver(spinand_driver);

MODULE_DESCRIPTION("SPI NAND driver for Micron");
MODULE_AUTHOR("Henry Pan <hspan@micron.com>, Kamlakant Patel <kamlakant.patel@broadcom.com>");
MODULE_LICENSE("GPL v2");