Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
 * quatech_daqp_cs.c
 * Quatech DAQP PCMCIA data capture cards COMEDI client driver
 * Copyright (C) 2000, 2003 Brent Baccala <baccala@freesoft.org>
 * The DAQP interface code in this file is released into the public domain.
 *
 * COMEDI - Linux Control and Measurement Device Interface
 * Copyright (C) 1998 David A. Schleef <ds@schleef.org>
 * http://www.comedi.org/
 *
 * Documentation for the DAQP PCMCIA cards can be found on Quatech's site:
 *	ftp://ftp.quatech.com/Manuals/daqp-208.pdf
 *
 * This manual is for both the DAQP-208 and the DAQP-308.
 *
 * What works:
 * - A/D conversion
 *	- 8 channels
 *	- 4 gain ranges
 *	- ground ref or differential
 *	- single-shot and timed both supported
 * - D/A conversion, single-shot
 * - digital I/O
 *
 * What doesn't:
 * - any kind of triggering - external or D/A channel 1
 * - the card's optional expansion board
 * - the card's timer (for anything other than A/D conversion)
 * - D/A update modes other than immediate (i.e, timed)
 * - fancier timing modes
 * - setting card's FIFO buffer thresholds to anything but default
 */

/*
 * Driver: quatech_daqp_cs
 * Description: Quatech DAQP PCMCIA data capture cards
 * Devices: [Quatech] DAQP-208 (daqp), DAQP-308
 * Author: Brent Baccala <baccala@freesoft.org>
 * Status: works
 */

#include <linux/module.h>

#include "../comedi_pcmcia.h"

/*
 * Register I/O map
 *
 * The D/A and timer registers can be accessed with 16-bit or 8-bit I/O
 * instructions. All other registers can only use 8-bit instructions.
 *
 * The FIFO and scanlist registers require two 8-bit instructions to
 * access the 16-bit data. Data is transferred LSB then MSB.
 */
#define DAQP_AI_FIFO_REG		0x00

#define DAQP_SCANLIST_REG		0x01
#define DAQP_SCANLIST_DIFFERENTIAL	BIT(14)
#define DAQP_SCANLIST_GAIN(x)		(((x) & 0x3) << 12)
#define DAQP_SCANLIST_CHANNEL(x)	(((x) & 0xf) << 8)
#define DAQP_SCANLIST_START		BIT(7)
#define DAQP_SCANLIST_EXT_GAIN(x)	(((x) & 0x3) << 4)
#define DAQP_SCANLIST_EXT_CHANNEL(x)	(((x) & 0xf) << 0)

#define DAQP_CTRL_REG			0x02
#define DAQP_CTRL_PACER_CLK(x)		(((x) & 0x3) << 6)
#define DAQP_CTRL_PACER_CLK_EXT		DAQP_CTRL_PACER_CLK(0)
#define DAQP_CTRL_PACER_CLK_5MHZ	DAQP_CTRL_PACER_CLK(1)
#define DAQP_CTRL_PACER_CLK_1MHZ	DAQP_CTRL_PACER_CLK(2)
#define DAQP_CTRL_PACER_CLK_100KHZ	DAQP_CTRL_PACER_CLK(3)
#define DAQP_CTRL_EXPANSION		BIT(5)
#define DAQP_CTRL_EOS_INT_ENA		BIT(4)
#define DAQP_CTRL_FIFO_INT_ENA		BIT(3)
#define DAQP_CTRL_TRIG_MODE		BIT(2)	/* 0=one-shot; 1=continuous */
#define DAQP_CTRL_TRIG_SRC		BIT(1)	/* 0=internal; 1=external */
#define DAQP_CTRL_TRIG_EDGE		BIT(0)	/* 0=rising; 1=falling */

#define DAQP_STATUS_REG			0x02
#define DAQP_STATUS_IDLE		BIT(7)
#define DAQP_STATUS_RUNNING		BIT(6)
#define DAQP_STATUS_DATA_LOST		BIT(5)
#define DAQP_STATUS_END_OF_SCAN		BIT(4)
#define DAQP_STATUS_FIFO_THRESHOLD	BIT(3)
#define DAQP_STATUS_FIFO_FULL		BIT(2)
#define DAQP_STATUS_FIFO_NEARFULL	BIT(1)
#define DAQP_STATUS_FIFO_EMPTY		BIT(0)
/* these bits clear when the status register is read */
#define DAQP_STATUS_EVENTS		(DAQP_STATUS_DATA_LOST |	\
					 DAQP_STATUS_END_OF_SCAN |	\
					 DAQP_STATUS_FIFO_THRESHOLD)

#define DAQP_DI_REG			0x03
#define DAQP_DO_REG			0x03

#define DAQP_PACER_LOW_REG		0x04
#define DAQP_PACER_MID_REG		0x05
#define DAQP_PACER_HIGH_REG		0x06

#define DAQP_CMD_REG			0x07
/* the monostable bits are self-clearing after the function is complete */
#define DAQP_CMD_ARM			BIT(7)	/* monostable */
#define DAQP_CMD_RSTF			BIT(6)	/* monostable */
#define DAQP_CMD_RSTQ			BIT(5)	/* monostable */
#define DAQP_CMD_STOP			BIT(4)	/* monostable */
#define DAQP_CMD_LATCH			BIT(3)	/* monostable */
#define DAQP_CMD_SCANRATE(x)		(((x) & 0x3) << 1)
#define DAQP_CMD_SCANRATE_100KHZ	DAQP_CMD_SCANRATE(0)
#define DAQP_CMD_SCANRATE_50KHZ		DAQP_CMD_SCANRATE(1)
#define DAQP_CMD_SCANRATE_25KHZ		DAQP_CMD_SCANRATE(2)
#define DAQP_CMD_FIFO_DATA		BIT(0)

#define DAQP_AO_REG			0x08	/* and 0x09 (16-bit) */

#define DAQP_TIMER_REG			0x0a	/* and 0x0b (16-bit) */

#define DAQP_AUX_REG			0x0f
/* Auxiliary Control register bits (write) */
#define DAQP_AUX_EXT_ANALOG_TRIG	BIT(7)
#define DAQP_AUX_PRETRIG		BIT(6)
#define DAQP_AUX_TIMER_INT_ENA		BIT(5)
#define DAQP_AUX_TIMER_MODE(x)		(((x) & 0x3) << 3)
#define DAQP_AUX_TIMER_MODE_RELOAD	DAQP_AUX_TIMER_MODE(0)
#define DAQP_AUX_TIMER_MODE_PAUSE	DAQP_AUX_TIMER_MODE(1)
#define DAQP_AUX_TIMER_MODE_GO		DAQP_AUX_TIMER_MODE(2)
#define DAQP_AUX_TIMER_MODE_EXT		DAQP_AUX_TIMER_MODE(3)
#define DAQP_AUX_TIMER_CLK_SRC_EXT	BIT(2)
#define DAQP_AUX_DA_UPDATE(x)		(((x) & 0x3) << 0)
#define DAQP_AUX_DA_UPDATE_DIRECT	DAQP_AUX_DA_UPDATE(0)
#define DAQP_AUX_DA_UPDATE_OVERFLOW	DAQP_AUX_DA_UPDATE(1)
#define DAQP_AUX_DA_UPDATE_EXTERNAL	DAQP_AUX_DA_UPDATE(2)
#define DAQP_AUX_DA_UPDATE_PACER	DAQP_AUX_DA_UPDATE(3)
/* Auxiliary Status register bits (read) */
#define DAQP_AUX_RUNNING		BIT(7)
#define DAQP_AUX_TRIGGERED		BIT(6)
#define DAQP_AUX_DA_BUFFER		BIT(5)
#define DAQP_AUX_TIMER_OVERFLOW		BIT(4)
#define DAQP_AUX_CONVERSION		BIT(3)
#define DAQP_AUX_DATA_LOST		BIT(2)
#define DAQP_AUX_FIFO_NEARFULL		BIT(1)
#define DAQP_AUX_FIFO_EMPTY		BIT(0)

#define DAQP_FIFO_SIZE			4096

#define DAQP_MAX_TIMER_SPEED		10000	/* 100 kHz in nanoseconds */

struct daqp_private {
	unsigned int pacer_div;
	int stop;
};

static const struct comedi_lrange range_daqp_ai = {
	4, {
		BIP_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(2.5),
		BIP_RANGE(1.25)
	}
};

static int daqp_clear_events(struct comedi_device *dev, int loops)
{
	unsigned int status;

	/*
	 * Reset any pending interrupts (my card has a tendency to require
	 * require multiple reads on the status register to achieve this).
	 */
	while (--loops) {
		status = inb(dev->iobase + DAQP_STATUS_REG);
		if ((status & DAQP_STATUS_EVENTS) == 0)
			return 0;
	}
	dev_err(dev->class_dev, "couldn't clear events in status register\n");
	return -EBUSY;
}

static int daqp_ai_cancel(struct comedi_device *dev,
			  struct comedi_subdevice *s)
{
	struct daqp_private *devpriv = dev->private;

	if (devpriv->stop)
		return -EIO;

	/*
	 * Stop any conversions, disable interrupts, and clear
	 * the status event flags.
	 */
	outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
	outb(0, dev->iobase + DAQP_CTRL_REG);
	inb(dev->iobase + DAQP_STATUS_REG);

	return 0;
}

static unsigned int daqp_ai_get_sample(struct comedi_device *dev,
				       struct comedi_subdevice *s)
{
	unsigned int val;

	/*
	 * Get a two's complement sample from the FIFO and
	 * return the munged offset binary value.
	 */
	val = inb(dev->iobase + DAQP_AI_FIFO_REG);
	val |= inb(dev->iobase + DAQP_AI_FIFO_REG) << 8;
	return comedi_offset_munge(s, val);
}

static irqreturn_t daqp_interrupt(int irq, void *dev_id)
{
	struct comedi_device *dev = dev_id;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_cmd *cmd = &s->async->cmd;
	int loop_limit = 10000;
	int status;

	if (!dev->attached)
		return IRQ_NONE;

	status = inb(dev->iobase + DAQP_STATUS_REG);
	if (!(status & DAQP_STATUS_EVENTS))
		return IRQ_NONE;

	while (!(status & DAQP_STATUS_FIFO_EMPTY)) {
		unsigned short data;

		if (status & DAQP_STATUS_DATA_LOST) {
			s->async->events |= COMEDI_CB_OVERFLOW;
			dev_warn(dev->class_dev, "data lost\n");
			break;
		}

		data = daqp_ai_get_sample(dev, s);
		comedi_buf_write_samples(s, &data, 1);

		if (cmd->stop_src == TRIG_COUNT &&
		    s->async->scans_done >= cmd->stop_arg) {
			s->async->events |= COMEDI_CB_EOA;
			break;
		}

		if ((loop_limit--) <= 0)
			break;

		status = inb(dev->iobase + DAQP_STATUS_REG);
	}

	if (loop_limit <= 0) {
		dev_warn(dev->class_dev,
			 "loop_limit reached in daqp_interrupt()\n");
		s->async->events |= COMEDI_CB_ERROR;
	}

	comedi_handle_events(dev, s);

	return IRQ_HANDLED;
}

static void daqp_ai_set_one_scanlist_entry(struct comedi_device *dev,
					   unsigned int chanspec,
					   int start)
{
	unsigned int chan = CR_CHAN(chanspec);
	unsigned int range = CR_RANGE(chanspec);
	unsigned int aref = CR_AREF(chanspec);
	unsigned int val;

	val = DAQP_SCANLIST_CHANNEL(chan) | DAQP_SCANLIST_GAIN(range);

	if (aref == AREF_DIFF)
		val |= DAQP_SCANLIST_DIFFERENTIAL;

	if (start)
		val |= DAQP_SCANLIST_START;

	outb(val & 0xff, dev->iobase + DAQP_SCANLIST_REG);
	outb((val >> 8) & 0xff, dev->iobase + DAQP_SCANLIST_REG);
}

static int daqp_ai_eos(struct comedi_device *dev,
		       struct comedi_subdevice *s,
		       struct comedi_insn *insn,
		       unsigned long context)
{
	unsigned int status;

	status = inb(dev->iobase + DAQP_AUX_REG);
	if (status & DAQP_AUX_CONVERSION)
		return 0;
	return -EBUSY;
}

static int daqp_ai_insn_read(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	struct daqp_private *devpriv = dev->private;
	int ret = 0;
	int i;

	if (devpriv->stop)
		return -EIO;

	outb(0, dev->iobase + DAQP_AUX_REG);

	/* Reset scan list queue */
	outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);

	/* Program one scan list entry */
	daqp_ai_set_one_scanlist_entry(dev, insn->chanspec, 1);

	/* Reset data FIFO (see page 28 of DAQP User's Manual) */
	outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);

	/* Set trigger - one-shot, internal, no interrupts */
	outb(DAQP_CTRL_PACER_CLK_100KHZ, dev->iobase + DAQP_CTRL_REG);

	ret = daqp_clear_events(dev, 10000);
	if (ret)
		return ret;

	for (i = 0; i < insn->n; i++) {
		/* Start conversion */
		outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA,
		     dev->iobase + DAQP_CMD_REG);

		ret = comedi_timeout(dev, s, insn, daqp_ai_eos, 0);
		if (ret)
			break;

		/* clear the status event flags */
		inb(dev->iobase + DAQP_STATUS_REG);

		data[i] = daqp_ai_get_sample(dev, s);
	}

	/* stop any conversions and clear the status event flags */
	outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
	inb(dev->iobase + DAQP_STATUS_REG);

	return ret ? ret : insn->n;
}

/* This function converts ns nanoseconds to a counter value suitable
 * for programming the device.  We always use the DAQP's 5 MHz clock,
 * which with its 24-bit counter, allows values up to 84 seconds.
 * Also, the function adjusts ns so that it cooresponds to the actual
 * time that the device will use.
 */

static int daqp_ns_to_timer(unsigned int *ns, unsigned int flags)
{
	int timer;

	timer = *ns / 200;
	*ns = timer * 200;

	return timer;
}

static void daqp_set_pacer(struct comedi_device *dev, unsigned int val)
{
	outb(val & 0xff, dev->iobase + DAQP_PACER_LOW_REG);
	outb((val >> 8) & 0xff, dev->iobase + DAQP_PACER_MID_REG);
	outb((val >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH_REG);
}

static int daqp_ai_cmdtest(struct comedi_device *dev,
			   struct comedi_subdevice *s,
			   struct comedi_cmd *cmd)
{
	struct daqp_private *devpriv = dev->private;
	int err = 0;
	unsigned int arg;

	/* Step 1 : check if triggers are trivially valid */

	err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_FOLLOW);
	err |= comedi_check_trigger_src(&cmd->convert_src,
					TRIG_TIMER | TRIG_NOW);
	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
	err |= comedi_check_trigger_is_unique(cmd->convert_src);
	err |= comedi_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	/* the async command requires a pacer */
	if (cmd->scan_begin_src != TRIG_TIMER && cmd->convert_src != TRIG_TIMER)
		err |= -EINVAL;

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);

	err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
					   cmd->chanlist_len);

	if (cmd->scan_begin_src == TRIG_TIMER)
		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
						    DAQP_MAX_TIMER_SPEED);

	if (cmd->convert_src == TRIG_TIMER) {
		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
						    DAQP_MAX_TIMER_SPEED);

		if (cmd->scan_begin_src == TRIG_TIMER) {
			/*
			 * If both scan_begin and convert are both timer
			 * values, the only way that can make sense is if
			 * the scan time is the number of conversions times
			 * the convert time.
			 */
			arg = cmd->convert_arg * cmd->scan_end_arg;
			err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg,
							   arg);
		}
	}

	if (cmd->stop_src == TRIG_COUNT)
		err |= comedi_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
	else	/* TRIG_NONE */
		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (cmd->convert_src == TRIG_TIMER) {
		arg = cmd->convert_arg;
		devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
	} else if (cmd->scan_begin_src == TRIG_TIMER) {
		arg = cmd->scan_begin_arg;
		devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
	}

	if (err)
		return 4;

	return 0;
}

static int daqp_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct daqp_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	int scanlist_start_on_every_entry;
	int threshold;
	int ret;
	int i;

	if (devpriv->stop)
		return -EIO;

	outb(0, dev->iobase + DAQP_AUX_REG);

	/* Reset scan list queue */
	outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);

	/* Program pacer clock
	 *
	 * There's two modes we can operate in.  If convert_src is
	 * TRIG_TIMER, then convert_arg specifies the time between
	 * each conversion, so we program the pacer clock to that
	 * frequency and set the SCANLIST_START bit on every scanlist
	 * entry.  Otherwise, convert_src is TRIG_NOW, which means
	 * we want the fastest possible conversions, scan_begin_src
	 * is TRIG_TIMER, and scan_begin_arg specifies the time between
	 * each scan, so we program the pacer clock to this frequency
	 * and only set the SCANLIST_START bit on the first entry.
	 */
	daqp_set_pacer(dev, devpriv->pacer_div);

	if (cmd->convert_src == TRIG_TIMER)
		scanlist_start_on_every_entry = 1;
	else
		scanlist_start_on_every_entry = 0;

	/* Program scan list */
	for (i = 0; i < cmd->chanlist_len; i++) {
		int start = (i == 0 || scanlist_start_on_every_entry);

		daqp_ai_set_one_scanlist_entry(dev, cmd->chanlist[i], start);
	}

	/* Now it's time to program the FIFO threshold, basically the
	 * number of samples the card will buffer before it interrupts
	 * the CPU.
	 *
	 * If we don't have a stop count, then use half the size of
	 * the FIFO (the manufacturer's recommendation).  Consider
	 * that the FIFO can hold 2K samples (4K bytes).  With the
	 * threshold set at half the FIFO size, we have a margin of
	 * error of 1024 samples.  At the chip's maximum sample rate
	 * of 100,000 Hz, the CPU would have to delay interrupt
	 * service for a full 10 milliseconds in order to lose data
	 * here (as opposed to higher up in the kernel).  I've never
	 * seen it happen.  However, for slow sample rates it may
	 * buffer too much data and introduce too much delay for the
	 * user application.
	 *
	 * If we have a stop count, then things get more interesting.
	 * If the stop count is less than the FIFO size (actually
	 * three-quarters of the FIFO size - see below), we just use
	 * the stop count itself as the threshold, the card interrupts
	 * us when that many samples have been taken, and we kill the
	 * acquisition at that point and are done.  If the stop count
	 * is larger than that, then we divide it by 2 until it's less
	 * than three quarters of the FIFO size (we always leave the
	 * top quarter of the FIFO as protection against sluggish CPU
	 * interrupt response) and use that as the threshold.  So, if
	 * the stop count is 4000 samples, we divide by two twice to
	 * get 1000 samples, use that as the threshold, take four
	 * interrupts to get our 4000 samples and are done.
	 *
	 * The algorithm could be more clever.  For example, if 81000
	 * samples are requested, we could set the threshold to 1500
	 * samples and take 54 interrupts to get 81000.  But 54 isn't
	 * a power of two, so this algorithm won't find that option.
	 * Instead, it'll set the threshold at 1266 and take 64
	 * interrupts to get 81024 samples, of which the last 24 will
	 * be discarded... but we won't get the last interrupt until
	 * they've been collected.  To find the first option, the
	 * computer could look at the prime decomposition of the
	 * sample count (81000 = 3^4 * 5^3 * 2^3) and factor it into a
	 * threshold (1500 = 3 * 5^3 * 2^2) and an interrupt count (54
	 * = 3^3 * 2).  Hmmm... a one-line while loop or prime
	 * decomposition of integers... I'll leave it the way it is.
	 *
	 * I'll also note a mini-race condition before ignoring it in
	 * the code.  Let's say we're taking 4000 samples, as before.
	 * After 1000 samples, we get an interrupt.  But before that
	 * interrupt is completely serviced, another sample is taken
	 * and loaded into the FIFO.  Since the interrupt handler
	 * empties the FIFO before returning, it will read 1001 samples.
	 * If that happens four times, we'll end up taking 4004 samples,
	 * not 4000.  The interrupt handler will discard the extra four
	 * samples (by halting the acquisition with four samples still
	 * in the FIFO), but we will have to wait for them.
	 *
	 * In short, this code works pretty well, but for either of
	 * the two reasons noted, might end up waiting for a few more
	 * samples than actually requested.  Shouldn't make too much
	 * of a difference.
	 */

	/* Save away the number of conversions we should perform, and
	 * compute the FIFO threshold (in bytes, not samples - that's
	 * why we multiple devpriv->count by 2 = sizeof(sample))
	 */

	if (cmd->stop_src == TRIG_COUNT) {
		unsigned long long nsamples;
		unsigned long long nbytes;

		nsamples = (unsigned long long)cmd->stop_arg *
			   cmd->scan_end_arg;
		nbytes = nsamples * comedi_bytes_per_sample(s);
		while (nbytes > DAQP_FIFO_SIZE * 3 / 4)
			nbytes /= 2;
		threshold = nbytes;
	} else {
		threshold = DAQP_FIFO_SIZE / 2;
	}

	/* Reset data FIFO (see page 28 of DAQP User's Manual) */

	outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);

	/* Set FIFO threshold.  First two bytes are near-empty
	 * threshold, which is unused; next two bytes are near-full
	 * threshold.  We computed the number of bytes we want in the
	 * FIFO when the interrupt is generated, what the card wants
	 * is actually the number of available bytes left in the FIFO
	 * when the interrupt is to happen.
	 */

	outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);
	outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);

	outb((DAQP_FIFO_SIZE - threshold) & 0xff,
	     dev->iobase + DAQP_AI_FIFO_REG);
	outb((DAQP_FIFO_SIZE - threshold) >> 8, dev->iobase + DAQP_AI_FIFO_REG);

	/* Set trigger - continuous, internal */
	outb(DAQP_CTRL_TRIG_MODE | DAQP_CTRL_PACER_CLK_5MHZ |
	     DAQP_CTRL_FIFO_INT_ENA, dev->iobase + DAQP_CTRL_REG);

	ret = daqp_clear_events(dev, 100);
	if (ret)
		return ret;

	/* Start conversion */
	outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA, dev->iobase + DAQP_CMD_REG);

	return 0;
}

static int daqp_ao_empty(struct comedi_device *dev,
			 struct comedi_subdevice *s,
			 struct comedi_insn *insn,
			 unsigned long context)
{
	unsigned int status;

	status = inb(dev->iobase + DAQP_AUX_REG);
	if ((status & DAQP_AUX_DA_BUFFER) == 0)
		return 0;
	return -EBUSY;
}

static int daqp_ao_insn_write(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn,
			      unsigned int *data)
{
	struct daqp_private *devpriv = dev->private;
	unsigned int chan = CR_CHAN(insn->chanspec);
	int i;

	if (devpriv->stop)
		return -EIO;

	/* Make sure D/A update mode is direct update */
	outb(0, dev->iobase + DAQP_AUX_REG);

	for (i = 0; i > insn->n; i++) {
		unsigned int val = data[i];
		int ret;

		/* D/A transfer rate is about 8ms */
		ret = comedi_timeout(dev, s, insn, daqp_ao_empty, 0);
		if (ret)
			return ret;

		/* write the two's complement value to the channel */
		outw((chan << 12) | comedi_offset_munge(s, val),
		     dev->iobase + DAQP_AO_REG);

		s->readback[chan] = val;
	}

	return insn->n;
}

static int daqp_di_insn_bits(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	struct daqp_private *devpriv = dev->private;

	if (devpriv->stop)
		return -EIO;

	data[0] = inb(dev->iobase + DAQP_DI_REG);

	return insn->n;
}

static int daqp_do_insn_bits(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	struct daqp_private *devpriv = dev->private;

	if (devpriv->stop)
		return -EIO;

	if (comedi_dio_update_state(s, data))
		outb(s->state, dev->iobase + DAQP_DO_REG);

	data[1] = s->state;

	return insn->n;
}

static int daqp_auto_attach(struct comedi_device *dev,
			    unsigned long context)
{
	struct pcmcia_device *link = comedi_to_pcmcia_dev(dev);
	struct daqp_private *devpriv;
	struct comedi_subdevice *s;
	int ret;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	link->config_flags |= CONF_AUTO_SET_IO | CONF_ENABLE_IRQ;
	ret = comedi_pcmcia_enable(dev, NULL);
	if (ret)
		return ret;
	dev->iobase = link->resource[0]->start;

	link->priv = dev;
	ret = pcmcia_request_irq(link, daqp_interrupt);
	if (ret == 0)
		dev->irq = link->irq;

	ret = comedi_alloc_subdevices(dev, 4);
	if (ret)
		return ret;

	s = &dev->subdevices[0];
	s->type		= COMEDI_SUBD_AI;
	s->subdev_flags	= SDF_READABLE | SDF_GROUND | SDF_DIFF;
	s->n_chan	= 8;
	s->maxdata	= 0xffff;
	s->range_table	= &range_daqp_ai;
	s->insn_read	= daqp_ai_insn_read;
	if (dev->irq) {
		dev->read_subdev = s;
		s->subdev_flags	|= SDF_CMD_READ;
		s->len_chanlist	= 2048;
		s->do_cmdtest	= daqp_ai_cmdtest;
		s->do_cmd	= daqp_ai_cmd;
		s->cancel	= daqp_ai_cancel;
	}

	s = &dev->subdevices[1];
	s->type		= COMEDI_SUBD_AO;
	s->subdev_flags	= SDF_WRITABLE;
	s->n_chan	= 2;
	s->maxdata	= 0x0fff;
	s->range_table	= &range_bipolar5;
	s->insn_write	= daqp_ao_insn_write;

	ret = comedi_alloc_subdev_readback(s);
	if (ret)
		return ret;

	/*
	 * Digital Input subdevice
	 * NOTE: The digital input lines are shared:
	 *
	 * Chan  Normal Mode        Expansion Mode
	 * ----  -----------------  ----------------------------
	 *  0    DI0, ext. trigger  Same as normal mode
	 *  1    DI1                External gain select, lo bit
	 *  2    DI2, ext. clock    Same as normal mode
	 *  3    DI3                External gain select, hi bit
	 */
	s = &dev->subdevices[2];
	s->type		= COMEDI_SUBD_DI;
	s->subdev_flags	= SDF_READABLE;
	s->n_chan	= 4;
	s->maxdata	= 1;
	s->insn_bits	= daqp_di_insn_bits;

	/*
	 * Digital Output subdevice
	 * NOTE: The digital output lines share the same pins on the
	 * interface connector as the four external channel selection
	 * bits. If expansion mode is used the digital outputs do not
	 * work.
	 */
	s = &dev->subdevices[3];
	s->type		= COMEDI_SUBD_DO;
	s->subdev_flags	= SDF_WRITABLE;
	s->n_chan	= 4;
	s->maxdata	= 1;
	s->insn_bits	= daqp_do_insn_bits;

	return 0;
}

static struct comedi_driver driver_daqp = {
	.driver_name	= "quatech_daqp_cs",
	.module		= THIS_MODULE,
	.auto_attach	= daqp_auto_attach,
	.detach		= comedi_pcmcia_disable,
};

static int daqp_cs_suspend(struct pcmcia_device *link)
{
	struct comedi_device *dev = link->priv;
	struct daqp_private *devpriv = dev ? dev->private : NULL;

	/* Mark the device as stopped, to block IO until later */
	if (devpriv)
		devpriv->stop = 1;

	return 0;
}

static int daqp_cs_resume(struct pcmcia_device *link)
{
	struct comedi_device *dev = link->priv;
	struct daqp_private *devpriv = dev ? dev->private : NULL;

	if (devpriv)
		devpriv->stop = 0;

	return 0;
}

static int daqp_cs_attach(struct pcmcia_device *link)
{
	return comedi_pcmcia_auto_config(link, &driver_daqp);
}

static const struct pcmcia_device_id daqp_cs_id_table[] = {
	PCMCIA_DEVICE_MANF_CARD(0x0137, 0x0027),
	PCMCIA_DEVICE_NULL
};
MODULE_DEVICE_TABLE(pcmcia, daqp_cs_id_table);

static struct pcmcia_driver daqp_cs_driver = {
	.name		= "quatech_daqp_cs",
	.owner		= THIS_MODULE,
	.id_table	= daqp_cs_id_table,
	.probe		= daqp_cs_attach,
	.remove		= comedi_pcmcia_auto_unconfig,
	.suspend	= daqp_cs_suspend,
	.resume		= daqp_cs_resume,
};
module_comedi_pcmcia_driver(driver_daqp, daqp_cs_driver);

MODULE_DESCRIPTION("Comedi driver for Quatech DAQP PCMCIA data capture cards");
MODULE_AUTHOR("Brent Baccala <baccala@freesoft.org>");
MODULE_LICENSE("GPL");