Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * Copyright © 2012 NetCommWireless
 * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au>
 *
 * Test for multi-bit error recovery on a NAND page This mostly tests the
 * ECC controller / driver.
 *
 * There are two test modes:
 *
 *	0 - artificially inserting bit errors until the ECC fails
 *	    This is the default method and fairly quick. It should
 *	    be independent of the quality of the FLASH.
 *
 *	1 - re-writing the same pattern repeatedly until the ECC fails.
 *	    This method relies on the physics of NAND FLASH to eventually
 *	    generate '0' bits if '1' has been written sufficient times.
 *	    Depending on the NAND, the first bit errors will appear after
 *	    1000 or more writes and then will usually snowball, reaching the
 *	    limits of the ECC quickly.
 *
 *	    The test stops after 10000 cycles, should your FLASH be
 *	    exceptionally good and not generate bit errors before that. Try
 *	    a different page in that case.
 *
 * Please note that neither of these tests will significantly 'use up' any
 * FLASH endurance. Only a maximum of two erase operations will be performed.
 *
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; see the file COPYING. If not, write to the Free Software
 * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/err.h>
#include <linux/mtd/rawnand.h>
#include <linux/slab.h>
#include "mtd_test.h"

static int dev;
module_param(dev, int, S_IRUGO);
MODULE_PARM_DESC(dev, "MTD device number to use");

static unsigned page_offset;
module_param(page_offset, uint, S_IRUGO);
MODULE_PARM_DESC(page_offset, "Page number relative to dev start");

static unsigned seed;
module_param(seed, uint, S_IRUGO);
MODULE_PARM_DESC(seed, "Random seed");

static int mode;
module_param(mode, int, S_IRUGO);
MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test");

static unsigned max_overwrite = 10000;

static loff_t   offset;     /* Offset of the page we're using. */
static unsigned eraseblock; /* Eraseblock number for our page. */

/* We assume that the ECC can correct up to a certain number
 * of biterrors per subpage. */
static unsigned subsize;  /* Size of subpages */
static unsigned subcount; /* Number of subpages per page */

static struct mtd_info *mtd;   /* MTD device */

static uint8_t *wbuffer; /* One page write / compare buffer */
static uint8_t *rbuffer; /* One page read buffer */

/* 'random' bytes from known offsets */
static uint8_t hash(unsigned offset)
{
	unsigned v = offset;
	unsigned char c;
	v ^= 0x7f7edfd3;
	v = v ^ (v >> 3);
	v = v ^ (v >> 5);
	v = v ^ (v >> 13);
	c = v & 0xFF;
	/* Reverse bits of result. */
	c = (c & 0x0F) << 4 | (c & 0xF0) >> 4;
	c = (c & 0x33) << 2 | (c & 0xCC) >> 2;
	c = (c & 0x55) << 1 | (c & 0xAA) >> 1;
	return c;
}

/* Writes wbuffer to page */
static int write_page(int log)
{
	if (log)
		pr_info("write_page\n");

	return mtdtest_write(mtd, offset, mtd->writesize, wbuffer);
}

/* Re-writes the data area while leaving the OOB alone. */
static int rewrite_page(int log)
{
	int err = 0;
	struct mtd_oob_ops ops;

	if (log)
		pr_info("rewrite page\n");

	ops.mode      = MTD_OPS_RAW; /* No ECC */
	ops.len       = mtd->writesize;
	ops.retlen    = 0;
	ops.ooblen    = 0;
	ops.oobretlen = 0;
	ops.ooboffs   = 0;
	ops.datbuf    = wbuffer;
	ops.oobbuf    = NULL;

	err = mtd_write_oob(mtd, offset, &ops);
	if (err || ops.retlen != mtd->writesize) {
		pr_err("error: write_oob failed (%d)\n", err);
		if (!err)
			err = -EIO;
	}

	return err;
}

/* Reads page into rbuffer. Returns number of corrected bit errors (>=0)
 * or error (<0) */
static int read_page(int log)
{
	int err = 0;
	size_t read;
	struct mtd_ecc_stats oldstats;

	if (log)
		pr_info("read_page\n");

	/* Saving last mtd stats */
	memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats));

	err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer);
	if (err == -EUCLEAN)
		err = mtd->ecc_stats.corrected - oldstats.corrected;

	if (err < 0 || read != mtd->writesize) {
		pr_err("error: read failed at %#llx\n", (long long)offset);
		if (err >= 0)
			err = -EIO;
	}

	return err;
}

/* Verifies rbuffer against random sequence */
static int verify_page(int log)
{
	unsigned i, errs = 0;

	if (log)
		pr_info("verify_page\n");

	for (i = 0; i < mtd->writesize; i++) {
		if (rbuffer[i] != hash(i+seed)) {
			pr_err("Error: page offset %u, expected %02x, got %02x\n",
				i, hash(i+seed), rbuffer[i]);
			errs++;
		}
	}

	if (errs)
		return -EIO;
	else
		return 0;
}

#define CBIT(v, n) ((v) & (1 << (n)))
#define BCLR(v, n) ((v) = (v) & ~(1 << (n)))

/* Finds the first '1' bit in wbuffer starting at offset 'byte'
 * and sets it to '0'. */
static int insert_biterror(unsigned byte)
{
	int bit;

	while (byte < mtd->writesize) {
		for (bit = 7; bit >= 0; bit--) {
			if (CBIT(wbuffer[byte], bit)) {
				BCLR(wbuffer[byte], bit);
				pr_info("Inserted biterror @ %u/%u\n", byte, bit);
				return 0;
			}
		}
		byte++;
	}
	pr_err("biterror: Failed to find a '1' bit\n");
	return -EIO;
}

/* Writes 'random' data to page and then introduces deliberate bit
 * errors into the page, while verifying each step. */
static int incremental_errors_test(void)
{
	int err = 0;
	unsigned i;
	unsigned errs_per_subpage = 0;

	pr_info("incremental biterrors test\n");

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (1) {

		err = rewrite_page(1);
		if (err)
			goto exit;

		err = read_page(1);
		if (err > 0)
			pr_info("Read reported %d corrected bit errors\n", err);
		if (err < 0) {
			pr_err("After %d biterrors per subpage, read reported error %d\n",
				errs_per_subpage, err);
			err = 0;
			goto exit;
		}

		err = verify_page(1);
		if (err) {
			pr_err("ECC failure, read data is incorrect despite read success\n");
			goto exit;
		}

		pr_info("Successfully corrected %d bit errors per subpage\n",
			errs_per_subpage);

		for (i = 0; i < subcount; i++) {
			err = insert_biterror(i * subsize);
			if (err < 0)
				goto exit;
		}
		errs_per_subpage++;
	}

exit:
	return err;
}


/* Writes 'random' data to page and then re-writes that same data repeatedly.
   This eventually develops bit errors (bits written as '1' will slowly become
   '0'), which are corrected as far as the ECC is capable of. */
static int overwrite_test(void)
{
	int err = 0;
	unsigned i;
	unsigned max_corrected = 0;
	unsigned opno = 0;
	/* We don't expect more than this many correctable bit errors per
	 * page. */
	#define MAXBITS 512
	static unsigned bitstats[MAXBITS]; /* bit error histogram. */

	memset(bitstats, 0, sizeof(bitstats));

	pr_info("overwrite biterrors test\n");

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (opno < max_overwrite) {

		err = write_page(0);
		if (err)
			break;

		err = read_page(0);
		if (err >= 0) {
			if (err >= MAXBITS) {
				pr_info("Implausible number of bit errors corrected\n");
				err = -EIO;
				break;
			}
			bitstats[err]++;
			if (err > max_corrected) {
				max_corrected = err;
				pr_info("Read reported %d corrected bit errors\n",
					err);
			}
		} else { /* err < 0 */
			pr_info("Read reported error %d\n", err);
			err = 0;
			break;
		}

		err = verify_page(0);
		if (err) {
			bitstats[max_corrected] = opno;
			pr_info("ECC failure, read data is incorrect despite read success\n");
			break;
		}

		err = mtdtest_relax();
		if (err)
			break;

		opno++;
	}

	/* At this point bitstats[0] contains the number of ops with no bit
	 * errors, bitstats[1] the number of ops with 1 bit error, etc. */
	pr_info("Bit error histogram (%d operations total):\n", opno);
	for (i = 0; i < max_corrected; i++)
		pr_info("Page reads with %3d corrected bit errors: %d\n",
			i, bitstats[i]);

exit:
	return err;
}

static int __init mtd_nandbiterrs_init(void)
{
	int err = 0;

	printk("\n");
	printk(KERN_INFO "==================================================\n");
	pr_info("MTD device: %d\n", dev);

	mtd = get_mtd_device(NULL, dev);
	if (IS_ERR(mtd)) {
		err = PTR_ERR(mtd);
		pr_err("error: cannot get MTD device\n");
		goto exit_mtddev;
	}

	if (!mtd_type_is_nand(mtd)) {
		pr_info("this test requires NAND flash\n");
		err = -ENODEV;
		goto exit_nand;
	}

	pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n",
		(unsigned long long)mtd->size, mtd->erasesize,
		mtd->writesize, mtd->oobsize);

	subsize  = mtd->writesize >> mtd->subpage_sft;
	subcount = mtd->writesize / subsize;

	pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);

	offset     = (loff_t)page_offset * mtd->writesize;
	eraseblock = mtd_div_by_eb(offset, mtd);

	pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",
		page_offset, offset, eraseblock);

	wbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!wbuffer) {
		err = -ENOMEM;
		goto exit_wbuffer;
	}

	rbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!rbuffer) {
		err = -ENOMEM;
		goto exit_rbuffer;
	}

	err = mtdtest_erase_eraseblock(mtd, eraseblock);
	if (err)
		goto exit_error;

	if (mode == 0)
		err = incremental_errors_test();
	else
		err = overwrite_test();

	if (err)
		goto exit_error;

	/* We leave the block un-erased in case of test failure. */
	err = mtdtest_erase_eraseblock(mtd, eraseblock);
	if (err)
		goto exit_error;

	err = -EIO;
	pr_info("finished successfully.\n");
	printk(KERN_INFO "==================================================\n");

exit_error:
	kfree(rbuffer);
exit_rbuffer:
	kfree(wbuffer);
exit_wbuffer:
	/* Nothing */
exit_nand:
	put_mtd_device(mtd);
exit_mtddev:
	return err;
}

static void __exit mtd_nandbiterrs_exit(void)
{
	return;
}

module_init(mtd_nandbiterrs_init);
module_exit(mtd_nandbiterrs_exit);

MODULE_DESCRIPTION("NAND bit error recovery test");
MODULE_AUTHOR("Iwo Mergler");
MODULE_LICENSE("GPL");