Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/*
 * Driver for Atmel QSPI Controller
 *
 * Copyright (C) 2015 Atmel Corporation
 *
 * Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/platform_data/atmel.h>
#include <linux/of.h>

#include <linux/io.h>
#include <linux/gpio.h>

/* QSPI register offsets */
#define QSPI_CR      0x0000  /* Control Register */
#define QSPI_MR      0x0004  /* Mode Register */
#define QSPI_RD      0x0008  /* Receive Data Register */
#define QSPI_TD      0x000c  /* Transmit Data Register */
#define QSPI_SR      0x0010  /* Status Register */
#define QSPI_IER     0x0014  /* Interrupt Enable Register */
#define QSPI_IDR     0x0018  /* Interrupt Disable Register */
#define QSPI_IMR     0x001c  /* Interrupt Mask Register */
#define QSPI_SCR     0x0020  /* Serial Clock Register */

#define QSPI_IAR     0x0030  /* Instruction Address Register */
#define QSPI_ICR     0x0034  /* Instruction Code Register */
#define QSPI_IFR     0x0038  /* Instruction Frame Register */

#define QSPI_SMR     0x0040  /* Scrambling Mode Register */
#define QSPI_SKR     0x0044  /* Scrambling Key Register */

#define QSPI_WPMR    0x00E4  /* Write Protection Mode Register */
#define QSPI_WPSR    0x00E8  /* Write Protection Status Register */

#define QSPI_VERSION 0x00FC  /* Version Register */


/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN                  BIT(0)
#define QSPI_CR_QSPIDIS                 BIT(1)
#define QSPI_CR_SWRST                   BIT(7)
#define QSPI_CR_LASTXFER                BIT(24)

/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SSM                     BIT(0)
#define QSPI_MR_LLB                     BIT(1)
#define QSPI_MR_WDRBT                   BIT(2)
#define QSPI_MR_SMRM                    BIT(3)
#define QSPI_MR_CSMODE_MASK             GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED     (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER         (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY   (2 << 4)
#define QSPI_MR_NBBITS_MASK             GENMASK(11, 8)
#define QSPI_MR_NBBITS(n)               ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_DLYBCT_MASK             GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n)               (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK              GENMASK(31, 24)
#define QSPI_MR_DLYCS(n)                (((n) << 24) & QSPI_MR_DLYCS_MASK)

/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR  */
#define QSPI_SR_RDRF                    BIT(0)
#define QSPI_SR_TDRE                    BIT(1)
#define QSPI_SR_TXEMPTY                 BIT(2)
#define QSPI_SR_OVRES                   BIT(3)
#define QSPI_SR_CSR                     BIT(8)
#define QSPI_SR_CSS                     BIT(9)
#define QSPI_SR_INSTRE                  BIT(10)
#define QSPI_SR_QSPIENS                 BIT(24)

#define QSPI_SR_CMD_COMPLETED	(QSPI_SR_INSTRE | QSPI_SR_CSR)

/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL                   BIT(0)
#define QSPI_SCR_CPHA                   BIT(1)
#define QSPI_SCR_SCBR_MASK              GENMASK(15, 8)
#define QSPI_SCR_SCBR(n)                (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK             GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n)               (((n) << 16) & QSPI_SCR_DLYBS_MASK)

/* Bitfields in QSPI_ICR (Instruction Code Register) */
#define QSPI_ICR_INST_MASK              GENMASK(7, 0)
#define QSPI_ICR_INST(inst)             (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_OPT_MASK               GENMASK(23, 16)
#define QSPI_ICR_OPT(opt)               (((opt) << 16) & QSPI_ICR_OPT_MASK)

/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK             GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI   (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT      (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT      (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO          (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO          (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD         (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD         (6 << 0)
#define QSPI_IFR_INSTEN                 BIT(4)
#define QSPI_IFR_ADDREN                 BIT(5)
#define QSPI_IFR_OPTEN                  BIT(6)
#define QSPI_IFR_DATAEN                 BIT(7)
#define QSPI_IFR_OPTL_MASK              GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT              (0 << 8)
#define QSPI_IFR_OPTL_2BIT              (1 << 8)
#define QSPI_IFR_OPTL_4BIT              (2 << 8)
#define QSPI_IFR_OPTL_8BIT              (3 << 8)
#define QSPI_IFR_ADDRL                  BIT(10)
#define QSPI_IFR_TFRTYP_MASK            GENMASK(13, 12)
#define QSPI_IFR_TFRTYP_TRSFR_READ      (0 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_READ_MEM  (1 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_WRITE     (2 << 12)
#define QSPI_IFR_TFRTYP_TRSFR_WRITE_MEM (3 << 13)
#define QSPI_IFR_CRM                    BIT(14)
#define QSPI_IFR_NBDUM_MASK             GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n)               (((n) << 16) & QSPI_IFR_NBDUM_MASK)

/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN                  BIT(0)
#define QSPI_SMR_RVDIS                  BIT(1)

/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN                  BIT(0)
#define QSPI_WPMR_WPKEY_MASK            GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey)          (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)

/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS                  BIT(0)
#define QSPI_WPSR_WPVSRC_MASK           GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src)           (((src) << 8) & QSPI_WPSR_WPVSRC)


struct atmel_qspi {
	void __iomem		*regs;
	void __iomem		*mem;
	struct clk		*clk;
	struct platform_device	*pdev;
	u32			pending;

	struct spi_nor		nor;
	u32			clk_rate;
	struct completion	cmd_completion;
};

struct atmel_qspi_command {
	union {
		struct {
			u32	instruction:1;
			u32	address:3;
			u32	mode:1;
			u32	dummy:1;
			u32	data:1;
			u32	reserved:25;
		}		bits;
		u32	word;
	}	enable;
	u8	instruction;
	u8	mode;
	u8	num_mode_cycles;
	u8	num_dummy_cycles;
	u32	address;

	size_t		buf_len;
	const void	*tx_buf;
	void		*rx_buf;
};

/* Register access functions */
static inline u32 qspi_readl(struct atmel_qspi *aq, u32 reg)
{
	return readl_relaxed(aq->regs + reg);
}

static inline void qspi_writel(struct atmel_qspi *aq, u32 reg, u32 value)
{
	writel_relaxed(value, aq->regs + reg);
}

static int atmel_qspi_run_transfer(struct atmel_qspi *aq,
				   const struct atmel_qspi_command *cmd)
{
	void __iomem *ahb_mem;

	/* Then fallback to a PIO transfer (memcpy() DOES NOT work!) */
	ahb_mem = aq->mem;
	if (cmd->enable.bits.address)
		ahb_mem += cmd->address;
	if (cmd->tx_buf)
		_memcpy_toio(ahb_mem, cmd->tx_buf, cmd->buf_len);
	else
		_memcpy_fromio(cmd->rx_buf, ahb_mem, cmd->buf_len);

	return 0;
}

#ifdef DEBUG
static void atmel_qspi_debug_command(struct atmel_qspi *aq,
				     const struct atmel_qspi_command *cmd,
				     u32 ifr)
{
	u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
	size_t len = 0;
	int i;

	if (cmd->enable.bits.instruction)
		cmd_buf[len++] = cmd->instruction;

	for (i = cmd->enable.bits.address-1; i >= 0; --i)
		cmd_buf[len++] = (cmd->address >> (i << 3)) & 0xff;

	if (cmd->enable.bits.mode)
		cmd_buf[len++] = cmd->mode;

	if (cmd->enable.bits.dummy) {
		int num = cmd->num_dummy_cycles;

		switch (ifr & QSPI_IFR_WIDTH_MASK) {
		case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
		case QSPI_IFR_WIDTH_DUAL_OUTPUT:
		case QSPI_IFR_WIDTH_QUAD_OUTPUT:
			num >>= 3;
			break;
		case QSPI_IFR_WIDTH_DUAL_IO:
		case QSPI_IFR_WIDTH_DUAL_CMD:
			num >>= 2;
			break;
		case QSPI_IFR_WIDTH_QUAD_IO:
		case QSPI_IFR_WIDTH_QUAD_CMD:
			num >>= 1;
			break;
		default:
			return;
		}

		for (i = 0; i < num; ++i)
			cmd_buf[len++] = 0;
	}

	/* Dump the SPI command */
	print_hex_dump(KERN_DEBUG, "qspi cmd: ", DUMP_PREFIX_NONE,
		       32, 1, cmd_buf, len, false);

#ifdef VERBOSE_DEBUG
	/* If verbose debug is enabled, also dump the TX data */
	if (cmd->enable.bits.data && cmd->tx_buf)
		print_hex_dump(KERN_DEBUG, "qspi tx : ", DUMP_PREFIX_NONE,
			       32, 1, cmd->tx_buf, cmd->buf_len, false);
#endif
}
#else
#define atmel_qspi_debug_command(aq, cmd, ifr)
#endif

static int atmel_qspi_run_command(struct atmel_qspi *aq,
				  const struct atmel_qspi_command *cmd,
				  u32 ifr_tfrtyp, enum spi_nor_protocol proto)
{
	u32 iar, icr, ifr, sr;
	int err = 0;

	iar = 0;
	icr = 0;
	ifr = ifr_tfrtyp;

	/* Set the SPI protocol */
	switch (proto) {
	case SNOR_PROTO_1_1_1:
		ifr |= QSPI_IFR_WIDTH_SINGLE_BIT_SPI;
		break;

	case SNOR_PROTO_1_1_2:
		ifr |= QSPI_IFR_WIDTH_DUAL_OUTPUT;
		break;

	case SNOR_PROTO_1_1_4:
		ifr |= QSPI_IFR_WIDTH_QUAD_OUTPUT;
		break;

	case SNOR_PROTO_1_2_2:
		ifr |= QSPI_IFR_WIDTH_DUAL_IO;
		break;

	case SNOR_PROTO_1_4_4:
		ifr |= QSPI_IFR_WIDTH_QUAD_IO;
		break;

	case SNOR_PROTO_2_2_2:
		ifr |= QSPI_IFR_WIDTH_DUAL_CMD;
		break;

	case SNOR_PROTO_4_4_4:
		ifr |= QSPI_IFR_WIDTH_QUAD_CMD;
		break;

	default:
		return -EINVAL;
	}

	/* Compute instruction parameters */
	if (cmd->enable.bits.instruction) {
		icr |= QSPI_ICR_INST(cmd->instruction);
		ifr |= QSPI_IFR_INSTEN;
	}

	/* Compute address parameters */
	switch (cmd->enable.bits.address) {
	case 4:
		ifr |= QSPI_IFR_ADDRL;
		/* fall through to the 24bit (3 byte) address case. */
	case 3:
		iar = (cmd->enable.bits.data) ? 0 : cmd->address;
		ifr |= QSPI_IFR_ADDREN;
		break;
	case 0:
		break;
	default:
		return -EINVAL;
	}

	/* Compute option parameters */
	if (cmd->enable.bits.mode && cmd->num_mode_cycles) {
		u32 mode_cycle_bits, mode_bits;

		icr |= QSPI_ICR_OPT(cmd->mode);
		ifr |= QSPI_IFR_OPTEN;

		switch (ifr & QSPI_IFR_WIDTH_MASK) {
		case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
		case QSPI_IFR_WIDTH_DUAL_OUTPUT:
		case QSPI_IFR_WIDTH_QUAD_OUTPUT:
			mode_cycle_bits = 1;
			break;
		case QSPI_IFR_WIDTH_DUAL_IO:
		case QSPI_IFR_WIDTH_DUAL_CMD:
			mode_cycle_bits = 2;
			break;
		case QSPI_IFR_WIDTH_QUAD_IO:
		case QSPI_IFR_WIDTH_QUAD_CMD:
			mode_cycle_bits = 4;
			break;
		default:
			return -EINVAL;
		}

		mode_bits = cmd->num_mode_cycles * mode_cycle_bits;
		switch (mode_bits) {
		case 1:
			ifr |= QSPI_IFR_OPTL_1BIT;
			break;

		case 2:
			ifr |= QSPI_IFR_OPTL_2BIT;
			break;

		case 4:
			ifr |= QSPI_IFR_OPTL_4BIT;
			break;

		case 8:
			ifr |= QSPI_IFR_OPTL_8BIT;
			break;

		default:
			return -EINVAL;
		}
	}

	/* Set number of dummy cycles */
	if (cmd->enable.bits.dummy)
		ifr |= QSPI_IFR_NBDUM(cmd->num_dummy_cycles);

	/* Set data enable */
	if (cmd->enable.bits.data) {
		ifr |= QSPI_IFR_DATAEN;

		/* Special case for Continuous Read Mode */
		if (!cmd->tx_buf && !cmd->rx_buf)
			ifr |= QSPI_IFR_CRM;
	}

	/* Clear pending interrupts */
	(void)qspi_readl(aq, QSPI_SR);

	/* Set QSPI Instruction Frame registers */
	atmel_qspi_debug_command(aq, cmd, ifr);
	qspi_writel(aq, QSPI_IAR, iar);
	qspi_writel(aq, QSPI_ICR, icr);
	qspi_writel(aq, QSPI_IFR, ifr);

	/* Skip to the final steps if there is no data */
	if (!cmd->enable.bits.data)
		goto no_data;

	/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
	(void)qspi_readl(aq, QSPI_IFR);

	/* Stop here for continuous read */
	if (!cmd->tx_buf && !cmd->rx_buf)
		return 0;
	/* Send/Receive data */
	err = atmel_qspi_run_transfer(aq, cmd);

	/* Release the chip-select */
	qspi_writel(aq, QSPI_CR, QSPI_CR_LASTXFER);

	if (err)
		return err;

#if defined(DEBUG) && defined(VERBOSE_DEBUG)
	/*
	 * If verbose debug is enabled, also dump the RX data in addition to
	 * the SPI command previously dumped by atmel_qspi_debug_command()
	 */
	if (cmd->rx_buf)
		print_hex_dump(KERN_DEBUG, "qspi rx : ", DUMP_PREFIX_NONE,
			       32, 1, cmd->rx_buf, cmd->buf_len, false);
#endif
no_data:
	/* Poll INSTRuction End status */
	sr = qspi_readl(aq, QSPI_SR);
	if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
		return err;

	/* Wait for INSTRuction End interrupt */
	reinit_completion(&aq->cmd_completion);
	aq->pending = sr & QSPI_SR_CMD_COMPLETED;
	qspi_writel(aq, QSPI_IER, QSPI_SR_CMD_COMPLETED);
	if (!wait_for_completion_timeout(&aq->cmd_completion,
					 msecs_to_jiffies(1000)))
		err = -ETIMEDOUT;
	qspi_writel(aq, QSPI_IDR, QSPI_SR_CMD_COMPLETED);

	return err;
}

static int atmel_qspi_read_reg(struct spi_nor *nor, u8 opcode,
			       u8 *buf, int len)
{
	struct atmel_qspi *aq = nor->priv;
	struct atmel_qspi_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.enable.bits.instruction = 1;
	cmd.enable.bits.data = 1;
	cmd.instruction = opcode;
	cmd.rx_buf = buf;
	cmd.buf_len = len;
	return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ,
				      nor->reg_proto);
}

static int atmel_qspi_write_reg(struct spi_nor *nor, u8 opcode,
				u8 *buf, int len)
{
	struct atmel_qspi *aq = nor->priv;
	struct atmel_qspi_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.enable.bits.instruction = 1;
	cmd.enable.bits.data = (buf != NULL && len > 0);
	cmd.instruction = opcode;
	cmd.tx_buf = buf;
	cmd.buf_len = len;
	return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
				      nor->reg_proto);
}

static ssize_t atmel_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
				const u_char *write_buf)
{
	struct atmel_qspi *aq = nor->priv;
	struct atmel_qspi_command cmd;
	ssize_t ret;

	memset(&cmd, 0, sizeof(cmd));
	cmd.enable.bits.instruction = 1;
	cmd.enable.bits.address = nor->addr_width;
	cmd.enable.bits.data = 1;
	cmd.instruction = nor->program_opcode;
	cmd.address = (u32)to;
	cmd.tx_buf = write_buf;
	cmd.buf_len = len;
	ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE_MEM,
				     nor->write_proto);
	return (ret < 0) ? ret : len;
}

static int atmel_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct atmel_qspi *aq = nor->priv;
	struct atmel_qspi_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.enable.bits.instruction = 1;
	cmd.enable.bits.address = nor->addr_width;
	cmd.instruction = nor->erase_opcode;
	cmd.address = (u32)offs;
	return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
				      nor->reg_proto);
}

static ssize_t atmel_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
			       u_char *read_buf)
{
	struct atmel_qspi *aq = nor->priv;
	struct atmel_qspi_command cmd;
	u8 num_mode_cycles, num_dummy_cycles;
	ssize_t ret;

	if (nor->read_dummy >= 2) {
		num_mode_cycles = 2;
		num_dummy_cycles = nor->read_dummy - 2;
	} else {
		num_mode_cycles = nor->read_dummy;
		num_dummy_cycles = 0;
	}

	memset(&cmd, 0, sizeof(cmd));
	cmd.enable.bits.instruction = 1;
	cmd.enable.bits.address = nor->addr_width;
	cmd.enable.bits.mode = (num_mode_cycles > 0);
	cmd.enable.bits.dummy = (num_dummy_cycles > 0);
	cmd.enable.bits.data = 1;
	cmd.instruction = nor->read_opcode;
	cmd.address = (u32)from;
	cmd.mode = 0xff; /* This value prevents from entering the 0-4-4 mode */
	cmd.num_mode_cycles = num_mode_cycles;
	cmd.num_dummy_cycles = num_dummy_cycles;
	cmd.rx_buf = read_buf;
	cmd.buf_len = len;
	ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ_MEM,
				     nor->read_proto);
	return (ret < 0) ? ret : len;
}

static int atmel_qspi_init(struct atmel_qspi *aq)
{
	unsigned long src_rate;
	u32 mr, scr, scbr;

	/* Reset the QSPI controller */
	qspi_writel(aq, QSPI_CR, QSPI_CR_SWRST);

	/* Set the QSPI controller in Serial Memory Mode */
	mr = QSPI_MR_NBBITS(8) | QSPI_MR_SSM;
	qspi_writel(aq, QSPI_MR, mr);

	src_rate = clk_get_rate(aq->clk);
	if (!src_rate)
		return -EINVAL;

	/* Compute the QSPI baudrate */
	scbr = DIV_ROUND_UP(src_rate, aq->clk_rate);
	if (scbr > 0)
		scbr--;
	scr = QSPI_SCR_SCBR(scbr);
	qspi_writel(aq, QSPI_SCR, scr);

	/* Enable the QSPI controller */
	qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIEN);

	return 0;
}

static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
	struct atmel_qspi *aq = (struct atmel_qspi *)dev_id;
	u32 status, mask, pending;

	status = qspi_readl(aq, QSPI_SR);
	mask = qspi_readl(aq, QSPI_IMR);
	pending = status & mask;

	if (!pending)
		return IRQ_NONE;

	aq->pending |= pending;
	if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
		complete(&aq->cmd_completion);

	return IRQ_HANDLED;
}

static int atmel_qspi_probe(struct platform_device *pdev)
{
	const struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_READ |
			SNOR_HWCAPS_READ_FAST |
			SNOR_HWCAPS_READ_1_1_2 |
			SNOR_HWCAPS_READ_1_2_2 |
			SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_1_1_4 |
			SNOR_HWCAPS_READ_1_4_4 |
			SNOR_HWCAPS_READ_4_4_4 |
			SNOR_HWCAPS_PP |
			SNOR_HWCAPS_PP_1_1_4 |
			SNOR_HWCAPS_PP_1_4_4 |
			SNOR_HWCAPS_PP_4_4_4,
	};
	struct device_node *child, *np = pdev->dev.of_node;
	struct atmel_qspi *aq;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int irq, err = 0;

	if (of_get_child_count(np) != 1)
		return -ENODEV;
	child = of_get_next_child(np, NULL);

	aq = devm_kzalloc(&pdev->dev, sizeof(*aq), GFP_KERNEL);
	if (!aq) {
		err = -ENOMEM;
		goto exit;
	}

	platform_set_drvdata(pdev, aq);
	init_completion(&aq->cmd_completion);
	aq->pdev = pdev;

	/* Map the registers */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
	aq->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(aq->regs)) {
		dev_err(&pdev->dev, "missing registers\n");
		err = PTR_ERR(aq->regs);
		goto exit;
	}

	/* Map the AHB memory */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
	aq->mem = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(aq->mem)) {
		dev_err(&pdev->dev, "missing AHB memory\n");
		err = PTR_ERR(aq->mem);
		goto exit;
	}

	/* Get the peripheral clock */
	aq->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(aq->clk)) {
		dev_err(&pdev->dev, "missing peripheral clock\n");
		err = PTR_ERR(aq->clk);
		goto exit;
	}

	/* Enable the peripheral clock */
	err = clk_prepare_enable(aq->clk);
	if (err) {
		dev_err(&pdev->dev, "failed to enable the peripheral clock\n");
		goto exit;
	}

	/* Request the IRQ */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "missing IRQ\n");
		err = irq;
		goto disable_clk;
	}
	err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
			       0, dev_name(&pdev->dev), aq);
	if (err)
		goto disable_clk;

	/* Setup the spi-nor */
	nor = &aq->nor;
	mtd = &nor->mtd;

	nor->dev = &pdev->dev;
	spi_nor_set_flash_node(nor, child);
	nor->priv = aq;
	mtd->priv = nor;

	nor->read_reg = atmel_qspi_read_reg;
	nor->write_reg = atmel_qspi_write_reg;
	nor->read = atmel_qspi_read;
	nor->write = atmel_qspi_write;
	nor->erase = atmel_qspi_erase;

	err = of_property_read_u32(child, "spi-max-frequency", &aq->clk_rate);
	if (err < 0)
		goto disable_clk;

	err = atmel_qspi_init(aq);
	if (err)
		goto disable_clk;

	err = spi_nor_scan(nor, NULL, &hwcaps);
	if (err)
		goto disable_clk;

	err = mtd_device_register(mtd, NULL, 0);
	if (err)
		goto disable_clk;

	of_node_put(child);

	return 0;

disable_clk:
	clk_disable_unprepare(aq->clk);
exit:
	of_node_put(child);

	return err;
}

static int atmel_qspi_remove(struct platform_device *pdev)
{
	struct atmel_qspi *aq = platform_get_drvdata(pdev);

	mtd_device_unregister(&aq->nor.mtd);
	qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIDIS);
	clk_disable_unprepare(aq->clk);
	return 0;
}


static const struct of_device_id atmel_qspi_dt_ids[] = {
	{ .compatible = "atmel,sama5d2-qspi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);

static struct platform_driver atmel_qspi_driver = {
	.driver = {
		.name	= "atmel_qspi",
		.of_match_table	= atmel_qspi_dt_ids,
	},
	.probe		= atmel_qspi_probe,
	.remove		= atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);

MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");