Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/*
 * ASPEED Static Memory Controller driver
 *
 * Copyright (c) 2015-2016, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/bug.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/sizes.h>
#include <linux/sysfs.h>

#define DEVICE_NAME	"aspeed-smc"

/*
 * The driver only support SPI flash
 */
enum aspeed_smc_flash_type {
	smc_type_nor  = 0,
	smc_type_nand = 1,
	smc_type_spi  = 2,
};

struct aspeed_smc_chip;

struct aspeed_smc_info {
	u32 maxsize;		/* maximum size of chip window */
	u8 nce;			/* number of chip enables */
	bool hastype;		/* flash type field exists in config reg */
	u8 we0;			/* shift for write enable bit for CE0 */
	u8 ctl0;		/* offset in regs of ctl for CE0 */

	void (*set_4b)(struct aspeed_smc_chip *chip);
};

static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);

static const struct aspeed_smc_info fmc_2400_info = {
	.maxsize = 64 * 1024 * 1024,
	.nce = 5,
	.hastype = true,
	.we0 = 16,
	.ctl0 = 0x10,
	.set_4b = aspeed_smc_chip_set_4b,
};

static const struct aspeed_smc_info spi_2400_info = {
	.maxsize = 64 * 1024 * 1024,
	.nce = 1,
	.hastype = false,
	.we0 = 0,
	.ctl0 = 0x04,
	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
};

static const struct aspeed_smc_info fmc_2500_info = {
	.maxsize = 256 * 1024 * 1024,
	.nce = 3,
	.hastype = true,
	.we0 = 16,
	.ctl0 = 0x10,
	.set_4b = aspeed_smc_chip_set_4b,
};

static const struct aspeed_smc_info spi_2500_info = {
	.maxsize = 128 * 1024 * 1024,
	.nce = 2,
	.hastype = false,
	.we0 = 16,
	.ctl0 = 0x10,
	.set_4b = aspeed_smc_chip_set_4b,
};

enum aspeed_smc_ctl_reg_value {
	smc_base,		/* base value without mode for other commands */
	smc_read,		/* command reg for (maybe fast) reads */
	smc_write,		/* command reg for writes */
	smc_max,
};

struct aspeed_smc_controller;

struct aspeed_smc_chip {
	int cs;
	struct aspeed_smc_controller *controller;
	void __iomem *ctl;			/* control register */
	void __iomem *ahb_base;			/* base of chip window */
	u32 ahb_window_size;			/* chip mapping window size */
	u32 ctl_val[smc_max];			/* control settings */
	enum aspeed_smc_flash_type type;	/* what type of flash */
	struct spi_nor nor;
};

struct aspeed_smc_controller {
	struct device *dev;

	struct mutex mutex;			/* controller access mutex */
	const struct aspeed_smc_info *info;	/* type info of controller */
	void __iomem *regs;			/* controller registers */
	void __iomem *ahb_base;			/* per-chip windows resource */
	u32 ahb_window_size;			/* full mapping window size */

	struct aspeed_smc_chip *chips[0];	/* pointers to attached chips */
};

/*
 * SPI Flash Configuration Register (AST2500 SPI)
 *     or
 * Type setting Register (AST2500 FMC).
 * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
 * driver does not support it.
 */
#define CONFIG_REG			0x0
#define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */

#define CONFIG_CE2_WRITE		BIT(18)
#define CONFIG_CE1_WRITE		BIT(17)
#define CONFIG_CE0_WRITE		BIT(16)

#define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
#define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
#define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */

/*
 * CE Control Register
 */
#define CE_CONTROL_REG			0x4

/*
 * CEx Control Register
 */
#define CONTROL_AAF_MODE		BIT(31)
#define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
#define CONTROL_IO_DUAL_DATA		BIT(29)
#define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
#define CONTROL_IO_QUAD_DATA		BIT(30)
#define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
#define CONTROL_CE_INACTIVE_SHIFT	24
#define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
					CONTROL_CE_INACTIVE_SHIFT)
/* 0 = 16T ... 15 = 1T   T=HCLK */
#define CONTROL_COMMAND_SHIFT		16
#define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
#define CONTROL_IO_DUMMY_HI		BIT(14)
#define CONTROL_IO_DUMMY_HI_SHIFT	14
#define CONTROL_CLK_DIV4		BIT(13) /* others */
#define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
#define CONTROL_RW_MERGE		BIT(12)
#define CONTROL_IO_DUMMY_LO_SHIFT	6
#define CONTROL_IO_DUMMY_LO		GENMASK(7, \
						CONTROL_IO_DUMMY_LO_SHIFT)
#define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
					 CONTROL_IO_DUMMY_LO)
#define CONTROL_IO_DUMMY_SET(dummy)				 \
	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))

#define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
#define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
						CONTROL_CLOCK_FREQ_SEL_SHIFT)
#define CONTROL_LSB_FIRST		BIT(5)
#define CONTROL_CLOCK_MODE_3		BIT(4)
#define CONTROL_IN_DUAL_DATA		BIT(3)
#define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
#define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
#define CONTROL_COMMAND_MODE_NORMAL	0
#define CONTROL_COMMAND_MODE_FREAD	1
#define CONTROL_COMMAND_MODE_WRITE	2
#define CONTROL_COMMAND_MODE_USER	3

#define CONTROL_KEEP_MASK						\
	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)

/*
 * The Segment Register uses a 8MB unit to encode the start address
 * and the end address of the mapping window of a flash SPI slave :
 *
 *        | byte 1 | byte 2 | byte 3 | byte 4 |
 *        +--------+--------+--------+--------+
 *        |  end   |  start |   0    |   0    |
 */
#define SEGMENT_ADDR_REG0		0x30
#define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
#define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
#define SEGMENT_ADDR_VALUE(start, end)					\
	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
#define SEGMENT_ADDR_REG(controller, cs)	\
	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)

/*
 * In user mode all data bytes read or written to the chip decode address
 * range are transferred to or from the SPI bus. The range is treated as a
 * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
 * to its size. The address within the multiple 8kB range is ignored when
 * sending bytes to the SPI bus.
 *
 * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
 * memcpy_toio on little endian targets use the optimized memcpy routines
 * that were designed for well behavied memory storage. These routines
 * have a stutter if the source and destination are not both word aligned,
 * once with a duplicate access to the source after aligning to the
 * destination to a word boundary, and again with a duplicate access to
 * the source when the final byte count is not word aligned.
 *
 * When writing or reading the fifo this stutter discards data or sends
 * too much data to the fifo and can not be used by this driver.
 *
 * While the low level io string routines that implement the insl family do
 * the desired accesses and memory increments, the cross architecture io
 * macros make them essentially impossible to use on a memory mapped address
 * instead of a a token from the call to iomap of an io port.
 *
 * These fifo routines use readl and friends to a constant io port and update
 * the memory buffer pointer and count via explicit code. The final updates
 * to len are optimistically suppressed.
 */
static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
{
	size_t offset = 0;

	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
		ioread32_rep(src, buf, len >> 2);
		offset = len & ~0x3;
		len -= offset;
	}
	ioread8_rep(src, (u8 *)buf + offset, len);
	return 0;
}

static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
				   size_t len)
{
	size_t offset = 0;

	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
		iowrite32_rep(dst, buf, len >> 2);
		offset = len & ~0x3;
		len -= offset;
	}
	iowrite8_rep(dst, (const u8 *)buf + offset, len);
	return 0;
}

static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
{
	return BIT(chip->controller->info->we0 + chip->cs);
}

static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 reg;

	reg = readl(controller->regs + CONFIG_REG);

	if (reg & aspeed_smc_chip_write_bit(chip))
		return;

	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
		controller->regs + CONFIG_REG, reg);
	reg |= aspeed_smc_chip_write_bit(chip);
	writel(reg, controller->regs + CONFIG_REG);
}

static void aspeed_smc_start_user(struct spi_nor *nor)
{
	struct aspeed_smc_chip *chip = nor->priv;
	u32 ctl = chip->ctl_val[smc_base];

	/*
	 * When the chip is controlled in user mode, we need write
	 * access to send the opcodes to it. So check the config.
	 */
	aspeed_smc_chip_check_config(chip);

	ctl |= CONTROL_COMMAND_MODE_USER |
		CONTROL_CE_STOP_ACTIVE_CONTROL;
	writel(ctl, chip->ctl);

	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
	writel(ctl, chip->ctl);
}

static void aspeed_smc_stop_user(struct spi_nor *nor)
{
	struct aspeed_smc_chip *chip = nor->priv;

	u32 ctl = chip->ctl_val[smc_read];
	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
		CONTROL_CE_STOP_ACTIVE_CONTROL;

	writel(ctl2, chip->ctl);	/* stop user CE control */
	writel(ctl, chip->ctl);		/* default to fread or read mode */
}

static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct aspeed_smc_chip *chip = nor->priv;

	mutex_lock(&chip->controller->mutex);
	return 0;
}

static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct aspeed_smc_chip *chip = nor->priv;

	mutex_unlock(&chip->controller->mutex);
}

static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	struct aspeed_smc_chip *chip = nor->priv;

	aspeed_smc_start_user(nor);
	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
	aspeed_smc_stop_user(nor);
	return 0;
}

static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
				int len)
{
	struct aspeed_smc_chip *chip = nor->priv;

	aspeed_smc_start_user(nor);
	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
	aspeed_smc_stop_user(nor);
	return 0;
}

static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
{
	struct aspeed_smc_chip *chip = nor->priv;
	__be32 temp;
	u32 cmdaddr;

	switch (nor->addr_width) {
	default:
		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
			  nor->addr_width);
		/* FALLTHROUGH */
	case 3:
		cmdaddr = addr & 0xFFFFFF;
		cmdaddr |= cmd << 24;

		temp = cpu_to_be32(cmdaddr);
		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
		break;
	case 4:
		temp = cpu_to_be32(addr);
		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
		break;
	}
}

static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
				    size_t len, u_char *read_buf)
{
	struct aspeed_smc_chip *chip = nor->priv;
	int i;
	u8 dummy = 0xFF;

	aspeed_smc_start_user(nor);
	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
	for (i = 0; i < chip->nor.read_dummy / 8; i++)
		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));

	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
	aspeed_smc_stop_user(nor);
	return len;
}

static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
				     size_t len, const u_char *write_buf)
{
	struct aspeed_smc_chip *chip = nor->priv;

	aspeed_smc_start_user(nor);
	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
	aspeed_smc_stop_user(nor);
	return len;
}

static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
{
	struct aspeed_smc_chip *chip;
	int n;

	for (n = 0; n < controller->info->nce; n++) {
		chip = controller->chips[n];
		if (chip)
			mtd_device_unregister(&chip->nor.mtd);
	}

	return 0;
}

static int aspeed_smc_remove(struct platform_device *dev)
{
	return aspeed_smc_unregister(platform_get_drvdata(dev));
}

static const struct of_device_id aspeed_smc_matches[] = {
	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
	{ }
};
MODULE_DEVICE_TABLE(of, aspeed_smc_matches);

/*
 * Each chip has a mapping window defined by a segment address
 * register defining a start and an end address on the AHB bus. These
 * addresses can be configured to fit the chip size and offer a
 * contiguous memory region across chips. For the moment, we only
 * check that each chip segment is valid.
 */
static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
					  struct resource *res)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 offset = 0;
	u32 reg;

	if (controller->info->nce > 1) {
		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));

		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
			return NULL;

		offset = SEGMENT_ADDR_START(reg) - res->start;
	}

	return controller->ahb_base + offset;
}

static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
{
	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));

	return SEGMENT_ADDR_START(seg0_val);
}

static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
			    u32 size)
{
	struct aspeed_smc_controller *controller = chip->controller;
	void __iomem *seg_reg;
	u32 seg_oldval, seg_newval, ahb_base_phy, end;

	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);

	seg_reg = SEGMENT_ADDR_REG(controller, cs);
	seg_oldval = readl(seg_reg);

	/*
	 * If the chip size is not specified, use the default segment
	 * size, but take into account the possible overlap with the
	 * previous segment
	 */
	if (!size)
		size = SEGMENT_ADDR_END(seg_oldval) - start;

	/*
	 * The segment cannot exceed the maximum window size of the
	 * controller.
	 */
	if (start + size > ahb_base_phy + controller->ahb_window_size) {
		size = ahb_base_phy + controller->ahb_window_size - start;
		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
			 cs, size >> 20);
	}

	end = start + size;
	seg_newval = SEGMENT_ADDR_VALUE(start, end);
	writel(seg_newval, seg_reg);

	/*
	 * Restore default value if something goes wrong. The chip
	 * might have set some bogus value and we would loose access
	 * to the chip.
	 */
	if (seg_newval != readl(seg_reg)) {
		dev_err(chip->nor.dev, "CE%d window invalid", cs);
		writel(seg_oldval, seg_reg);
		start = SEGMENT_ADDR_START(seg_oldval);
		end = SEGMENT_ADDR_END(seg_oldval);
		size = end - start;
	}

	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
		 cs, start, end, size >> 20);

	return size;
}

/*
 * The segment register defines the mapping window on the AHB bus and
 * it needs to be configured depending on the chip size. The segment
 * register of the following CE also needs to be tuned in order to
 * provide a contiguous window across multiple chips.
 *
 * This is expected to be called in increasing CE order
 */
static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 ahb_base_phy, start;
	u32 size = chip->nor.mtd.size;

	/*
	 * Each controller has a chip size limit for direct memory
	 * access
	 */
	if (size > controller->info->maxsize)
		size = controller->info->maxsize;

	/*
	 * The AST2400 SPI controller only handles one chip and does
	 * not have segment registers. Let's use the chip size for the
	 * AHB window.
	 */
	if (controller->info == &spi_2400_info)
		goto out;

	/*
	 * The AST2500 SPI controller has a HW bug when the CE0 chip
	 * size reaches 128MB. Enforce a size limit of 120MB to
	 * prevent the controller from using bogus settings in the
	 * segment register.
	 */
	if (chip->cs == 0 && controller->info == &spi_2500_info &&
	    size == SZ_128M) {
		size = 120 << 20;
		dev_info(chip->nor.dev,
			 "CE%d window resized to %dMB (AST2500 HW quirk)",
			 chip->cs, size >> 20);
	}

	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);

	/*
	 * As a start address for the current segment, use the default
	 * start address if we are handling CE0 or use the previous
	 * segment ending address
	 */
	if (chip->cs) {
		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));

		start = SEGMENT_ADDR_END(prev);
	} else {
		start = ahb_base_phy;
	}

	size = chip_set_segment(chip, chip->cs, start, size);

	/* Update chip base address on the AHB bus */
	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);

	/*
	 * Now, make sure the next segment does not overlap with the
	 * current one we just configured, even if there is no
	 * available chip. That could break access in Command Mode.
	 */
	if (chip->cs < controller->info->nce - 1)
		chip_set_segment(chip, chip->cs + 1, start + size, 0);

out:
	if (size < chip->nor.mtd.size)
		dev_warn(chip->nor.dev,
			 "CE%d window too small for chip %dMB",
			 chip->cs, (u32)chip->nor.mtd.size >> 20);

	return size;
}

static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 reg;

	reg = readl(controller->regs + CONFIG_REG);

	reg |= aspeed_smc_chip_write_bit(chip);
	writel(reg, controller->regs + CONFIG_REG);
}

static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 reg;

	chip->type = type;

	reg = readl(controller->regs + CONFIG_REG);
	reg &= ~(3 << (chip->cs * 2));
	reg |= chip->type << (chip->cs * 2);
	writel(reg, controller->regs + CONFIG_REG);
}

/*
 * The first chip of the AST2500 FMC flash controller is strapped by
 * hardware, or autodetected, but other chips need to be set. Enforce
 * the 4B setting for all chips.
 */
static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
{
	struct aspeed_smc_controller *controller = chip->controller;
	u32 reg;

	reg = readl(controller->regs + CE_CONTROL_REG);
	reg |= 1 << chip->cs;
	writel(reg, controller->regs + CE_CONTROL_REG);
}

/*
 * The AST2400 SPI flash controller does not have a CE Control
 * register. It uses the CE0 control register to set 4Byte mode at the
 * controller level.
 */
static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
{
	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
}

static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
				      struct resource *res)
{
	struct aspeed_smc_controller *controller = chip->controller;
	const struct aspeed_smc_info *info = controller->info;
	u32 reg, base_reg;

	/*
	 * Always turn on the write enable bit to allow opcodes to be
	 * sent in user mode.
	 */
	aspeed_smc_chip_enable_write(chip);

	/* The driver only supports SPI type flash */
	if (info->hastype)
		aspeed_smc_chip_set_type(chip, smc_type_spi);

	/*
	 * Configure chip base address in memory
	 */
	chip->ahb_base = aspeed_smc_chip_base(chip, res);
	if (!chip->ahb_base) {
		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
		return -EINVAL;
	}

	/*
	 * Get value of the inherited control register. U-Boot usually
	 * does some timing calibration on the FMC chip, so it's good
	 * to keep them. In the future, we should handle calibration
	 * from Linux.
	 */
	reg = readl(chip->ctl);
	dev_dbg(controller->dev, "control register: %08x\n", reg);

	base_reg = reg & CONTROL_KEEP_MASK;
	if (base_reg != reg) {
		dev_dbg(controller->dev,
			"control register changed to: %08x\n",
			base_reg);
	}
	chip->ctl_val[smc_base] = base_reg;

	/*
	 * Retain the prior value of the control register as the
	 * default if it was normal access mode. Otherwise start with
	 * the sanitized base value set to read mode.
	 */
	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
	    CONTROL_COMMAND_MODE_NORMAL)
		chip->ctl_val[smc_read] = reg;
	else
		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
			CONTROL_COMMAND_MODE_NORMAL;

	dev_dbg(controller->dev, "default control register: %08x\n",
		chip->ctl_val[smc_read]);
	return 0;
}

static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
{
	struct aspeed_smc_controller *controller = chip->controller;
	const struct aspeed_smc_info *info = controller->info;
	u32 cmd;

	if (chip->nor.addr_width == 4 && info->set_4b)
		info->set_4b(chip);

	/* This is for direct AHB access when using Command Mode. */
	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);

	/*
	 * base mode has not been optimized yet. use it for writes.
	 */
	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
		CONTROL_COMMAND_MODE_WRITE;

	dev_dbg(controller->dev, "write control register: %08x\n",
		chip->ctl_val[smc_write]);

	/*
	 * TODO: Adjust clocks if fast read is supported and interpret
	 * SPI-NOR flags to adjust controller settings.
	 */
	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
		if (chip->nor.read_dummy == 0)
			cmd = CONTROL_COMMAND_MODE_NORMAL;
		else
			cmd = CONTROL_COMMAND_MODE_FREAD;
	} else {
		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
		return -EINVAL;
	}

	chip->ctl_val[smc_read] |= cmd |
		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);

	dev_dbg(controller->dev, "base control register: %08x\n",
		chip->ctl_val[smc_read]);
	return 0;
}

static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
				  struct device_node *np, struct resource *r)
{
	const struct spi_nor_hwcaps hwcaps = {
		.mask = SNOR_HWCAPS_READ |
			SNOR_HWCAPS_READ_FAST |
			SNOR_HWCAPS_PP,
	};
	const struct aspeed_smc_info *info = controller->info;
	struct device *dev = controller->dev;
	struct device_node *child;
	unsigned int cs;
	int ret = -ENODEV;

	for_each_available_child_of_node(np, child) {
		struct aspeed_smc_chip *chip;
		struct spi_nor *nor;
		struct mtd_info *mtd;

		/* This driver does not support NAND or NOR flash devices. */
		if (!of_device_is_compatible(child, "jedec,spi-nor"))
			continue;

		ret = of_property_read_u32(child, "reg", &cs);
		if (ret) {
			dev_err(dev, "Couldn't not read chip select.\n");
			break;
		}

		if (cs >= info->nce) {
			dev_err(dev, "Chip select %d out of range.\n",
				cs);
			ret = -ERANGE;
			break;
		}

		if (controller->chips[cs]) {
			dev_err(dev, "Chip select %d already in use by %s\n",
				cs, dev_name(controller->chips[cs]->nor.dev));
			ret = -EBUSY;
			break;
		}

		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
		if (!chip) {
			ret = -ENOMEM;
			break;
		}

		chip->controller = controller;
		chip->ctl = controller->regs + info->ctl0 + cs * 4;
		chip->cs = cs;

		nor = &chip->nor;
		mtd = &nor->mtd;

		nor->dev = dev;
		nor->priv = chip;
		spi_nor_set_flash_node(nor, child);
		nor->read = aspeed_smc_read_user;
		nor->write = aspeed_smc_write_user;
		nor->read_reg = aspeed_smc_read_reg;
		nor->write_reg = aspeed_smc_write_reg;
		nor->prepare = aspeed_smc_prep;
		nor->unprepare = aspeed_smc_unprep;

		ret = aspeed_smc_chip_setup_init(chip, r);
		if (ret)
			break;

		/*
		 * TODO: Add support for Dual and Quad SPI protocols
		 * attach when board support is present as determined
		 * by of property.
		 */
		ret = spi_nor_scan(nor, NULL, &hwcaps);
		if (ret)
			break;

		ret = aspeed_smc_chip_setup_finish(chip);
		if (ret)
			break;

		ret = mtd_device_register(mtd, NULL, 0);
		if (ret)
			break;

		controller->chips[cs] = chip;
	}

	if (ret)
		aspeed_smc_unregister(controller);

	return ret;
}

static int aspeed_smc_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct aspeed_smc_controller *controller;
	const struct of_device_id *match;
	const struct aspeed_smc_info *info;
	struct resource *res;
	int ret;

	match = of_match_device(aspeed_smc_matches, &pdev->dev);
	if (!match || !match->data)
		return -ENODEV;
	info = match->data;

	controller = devm_kzalloc(&pdev->dev, sizeof(*controller) +
		info->nce * sizeof(controller->chips[0]), GFP_KERNEL);
	if (!controller)
		return -ENOMEM;
	controller->info = info;
	controller->dev = dev;

	mutex_init(&controller->mutex);
	platform_set_drvdata(pdev, controller);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	controller->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(controller->regs))
		return PTR_ERR(controller->regs);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	controller->ahb_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(controller->ahb_base))
		return PTR_ERR(controller->ahb_base);

	controller->ahb_window_size = resource_size(res);

	ret = aspeed_smc_setup_flash(controller, np, res);
	if (ret)
		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);

	return ret;
}

static struct platform_driver aspeed_smc_driver = {
	.probe = aspeed_smc_probe,
	.remove = aspeed_smc_remove,
	.driver = {
		.name = DEVICE_NAME,
		.of_match_table = aspeed_smc_matches,
	}
};

module_platform_driver(aspeed_smc_driver);

MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
MODULE_LICENSE("GPL v2");