Free Electrons

Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
/*
 * NXP LPC32XX NAND SLC driver
 *
 * Authors:
 *    Kevin Wells <kevin.wells@nxp.com>
 *    Roland Stigge <stigge@antcom.de>
 *
 * Copyright © 2011 NXP Semiconductors
 * Copyright © 2012 Roland Stigge
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mtd/lpc32xx_slc.h>

#define LPC32XX_MODNAME		"lpc32xx-nand"

/**********************************************************************
* SLC NAND controller register offsets
**********************************************************************/

#define SLC_DATA(x)		(x + 0x000)
#define SLC_ADDR(x)		(x + 0x004)
#define SLC_CMD(x)		(x + 0x008)
#define SLC_STOP(x)		(x + 0x00C)
#define SLC_CTRL(x)		(x + 0x010)
#define SLC_CFG(x)		(x + 0x014)
#define SLC_STAT(x)		(x + 0x018)
#define SLC_INT_STAT(x)		(x + 0x01C)
#define SLC_IEN(x)		(x + 0x020)
#define SLC_ISR(x)		(x + 0x024)
#define SLC_ICR(x)		(x + 0x028)
#define SLC_TAC(x)		(x + 0x02C)
#define SLC_TC(x)		(x + 0x030)
#define SLC_ECC(x)		(x + 0x034)
#define SLC_DMA_DATA(x)		(x + 0x038)

/**********************************************************************
* slc_ctrl register definitions
**********************************************************************/
#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */

/**********************************************************************
* slc_cfg register definitions
**********************************************************************/
#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */

/**********************************************************************
* slc_stat register definitions
**********************************************************************/
#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */

/**********************************************************************
* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
**********************************************************************/
#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */

/**********************************************************************
* slc_tac register definitions
**********************************************************************/
/* Computation of clock cycles on basis of controller and device clock rates */
#define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)

/* Clock setting for RDY write sample wait time in 2*n clocks */
#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
/* Write pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
/* Write hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
/* Write setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
/* Clock setting for RDY read sample wait time in 2*n clocks */
#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
/* Read pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
/* Read hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
/* Read setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))

/**********************************************************************
* slc_ecc register definitions
**********************************************************************/
/* ECC line party fetch macro */
#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)

/*
 * DMA requires storage space for the DMA local buffer and the hardware ECC
 * storage area. The DMA local buffer is only used if DMA mapping fails
 * during runtime.
 */
#define LPC32XX_DMA_DATA_SIZE		4096
#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)

/* Number of bytes used for ECC stored in NAND per 256 bytes */
#define LPC32XX_SLC_DEV_ECC_BYTES	3

/*
 * If the NAND base clock frequency can't be fetched, this frequency will be
 * used instead as the base. This rate is used to setup the timing registers
 * used for NAND accesses.
 */
#define LPC32XX_DEF_BUS_RATE		133250000

/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
#define LPC32XX_DMA_TIMEOUT		100

/*
 * NAND ECC Layout for small page NAND devices
 * Note: For large and huge page devices, the default layouts are used
 */
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	if (section)
		return -ERANGE;

	oobregion->length = 6;
	oobregion->offset = 10;

	return 0;
}

static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 4;
	} else {
		oobregion->offset = 6;
		oobregion->length = 4;
	}

	return 0;
}

static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
	.ecc = lpc32xx_ooblayout_ecc,
	.free = lpc32xx_ooblayout_free,
};

static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

/*
 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 * Note: Large page devices used the default layout
 */
static struct nand_bbt_descr bbt_smallpage_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = mirror_pattern
};

/*
 * NAND platform configuration structure
 */
struct lpc32xx_nand_cfg_slc {
	uint32_t wdr_clks;
	uint32_t wwidth;
	uint32_t whold;
	uint32_t wsetup;
	uint32_t rdr_clks;
	uint32_t rwidth;
	uint32_t rhold;
	uint32_t rsetup;
	int wp_gpio;
	struct mtd_partition *parts;
	unsigned num_parts;
};

struct lpc32xx_nand_host {
	struct nand_chip	nand_chip;
	struct lpc32xx_slc_platform_data *pdata;
	struct clk		*clk;
	void __iomem		*io_base;
	struct lpc32xx_nand_cfg_slc *ncfg;

	struct completion	comp;
	struct dma_chan		*dma_chan;
	uint32_t		dma_buf_len;
	struct dma_slave_config	dma_slave_config;
	struct scatterlist	sgl;

	/*
	 * DMA and CPU addresses of ECC work area and data buffer
	 */
	uint32_t		*ecc_buf;
	uint8_t			*data_buf;
	dma_addr_t		io_base_dma;
};

static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
	uint32_t clkrate, tmp;

	/* Reset SLC controller */
	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
	udelay(1000);

	/* Basic setup */
	writel(0, SLC_CFG(host->io_base));
	writel(0, SLC_IEN(host->io_base));
	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
		SLC_ICR(host->io_base));

	/* Get base clock for SLC block */
	clkrate = clk_get_rate(host->clk);
	if (clkrate == 0)
		clkrate = LPC32XX_DEF_BUS_RATE;

	/* Compute clock setup values */
	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
		SLCTAC_RDR(host->ncfg->rdr_clks) |
		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
	writel(tmp, SLC_TAC(host->io_base));
}

/*
 * Hardware specific access to control lines
 */
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
	unsigned int ctrl)
{
	uint32_t tmp;
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);

	/* Does CE state need to be changed? */
	tmp = readl(SLC_CFG(host->io_base));
	if (ctrl & NAND_NCE)
		tmp |= SLCCFG_CE_LOW;
	else
		tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CFG(host->io_base));

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			writel(cmd, SLC_CMD(host->io_base));
		else
			writel(cmd, SLC_ADDR(host->io_base));
	}
}

/*
 * Read the Device Ready pin
 */
static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	int rdy = 0;

	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
		rdy = 1;

	return rdy;
}

/*
 * Enable NAND write protect
 */
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 0);
}

/*
 * Disable NAND write protect
 */
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 1);
}

/*
 * Prepares SLC for transfers with H/W ECC enabled
 */
static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
{
	/* Hardware ECC is enabled automatically in hardware as needed */
}

/*
 * Calculates the ECC for the data
 */
static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
				      const unsigned char *buf,
				      unsigned char *code)
{
	/*
	 * ECC is calculated automatically in hardware during syndrome read
	 * and write operations, so it doesn't need to be calculated here.
	 */
	return 0;
}

/*
 * Read a single byte from NAND device
 */
static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);

	return (uint8_t)readl(SLC_DATA(host->io_base));
}

/*
 * Simple device read without ECC
 */
static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);

	/* Direct device read with no ECC */
	while (len-- > 0)
		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
}

/*
 * Simple device write without ECC
 */
static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);

	/* Direct device write with no ECC */
	while (len-- > 0)
		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
}

/*
 * Read the OOB data from the device without ECC using FIFO method
 */
static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
					  struct nand_chip *chip, int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

/*
 * Write the OOB data to the device without ECC using FIFO method
 */
static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
	struct nand_chip *chip, int page)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/*
 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 */
static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
{
	int i;

	for (i = 0; i < (count * 3); i += 3) {
		uint32_t ce = ecc[i / 3];
		ce = ~(ce << 2) & 0xFFFFFF;
		spare[i + 2] = (uint8_t)(ce & 0xFF);
		ce >>= 8;
		spare[i + 1] = (uint8_t)(ce & 0xFF);
		ce >>= 8;
		spare[i] = (uint8_t)(ce & 0xFF);
	}
}

static void lpc32xx_dma_complete_func(void *completion)
{
	complete(completion);
}

static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
			    void *mem, int len, enum dma_transfer_direction dir)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	struct dma_async_tx_descriptor *desc;
	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	int res;

	host->dma_slave_config.direction = dir;
	host->dma_slave_config.src_addr = dma;
	host->dma_slave_config.dst_addr = dma;
	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.src_maxburst = 4;
	host->dma_slave_config.dst_maxburst = 4;
	/* DMA controller does flow control: */
	host->dma_slave_config.device_fc = false;
	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
		return -ENXIO;
	}

	sg_init_one(&host->sgl, mem, len);

	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
			 DMA_BIDIRECTIONAL);
	if (res != 1) {
		dev_err(mtd->dev.parent, "Failed to map sg list\n");
		return -ENXIO;
	}
	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
				       flags);
	if (!desc) {
		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
		goto out1;
	}

	init_completion(&host->comp);
	desc->callback = lpc32xx_dma_complete_func;
	desc->callback_param = &host->comp;

	dmaengine_submit(desc);
	dma_async_issue_pending(host->dma_chan);

	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));

	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);

	return 0;
out1:
	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);
	return -ENXIO;
}

/*
 * DMA read/write transfers with ECC support
 */
static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
			int read)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	int i, status = 0;
	unsigned long timeout;
	int res;
	enum dma_transfer_direction dir =
		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
	uint8_t *dma_buf;
	bool dma_mapped;

	if ((void *)buf <= high_memory) {
		dma_buf = buf;
		dma_mapped = true;
	} else {
		dma_buf = host->data_buf;
		dma_mapped = false;
		if (!read)
			memcpy(host->data_buf, buf, mtd->writesize);
	}

	if (read) {
		writel(readl(SLC_CFG(host->io_base)) |
		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
	} else {
		writel((readl(SLC_CFG(host->io_base)) |
			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
		       ~SLCCFG_DMA_DIR,
			SLC_CFG(host->io_base));
	}

	/* Clear initial ECC */
	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));

	/* Transfer size is data area only */
	writel(mtd->writesize, SLC_TC(host->io_base));

	/* Start transfer in the NAND controller */
	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
	       SLC_CTRL(host->io_base));

	for (i = 0; i < chip->ecc.steps; i++) {
		/* Data */
		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
				       dma_buf + i * chip->ecc.size,
				       mtd->writesize / chip->ecc.steps, dir);
		if (res)
			return res;

		/* Always _read_ ECC */
		if (i == chip->ecc.steps - 1)
			break;
		if (!read) /* ECC availability delayed on write */
			udelay(10);
		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
		if (res)
			return res;
	}

	/*
	 * According to NXP, the DMA can be finished here, but the NAND
	 * controller may still have buffered data. After porting to using the
	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
	 * appears to be always true, according to tests. Keeping the check for
	 * safety reasons for now.
	 */
	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
		       time_before(jiffies, timeout))
			cpu_relax();
		if (!time_before(jiffies, timeout)) {
			dev_err(mtd->dev.parent, "FIFO held data too long\n");
			status = -EIO;
		}
	}

	/* Read last calculated ECC value */
	if (!read)
		udelay(10);
	host->ecc_buf[chip->ecc.steps - 1] =
		readl(SLC_ECC(host->io_base));

	/* Flush DMA */
	dmaengine_terminate_all(host->dma_chan);

	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
	    readl(SLC_TC(host->io_base))) {
		/* Something is left in the FIFO, something is wrong */
		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
		status = -EIO;
	}

	/* Stop DMA & HW ECC */
	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
	       SLC_CTRL(host->io_base));
	writel(readl(SLC_CFG(host->io_base)) &
	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));

	if (!dma_mapped && read)
		memcpy(buf, host->data_buf, mtd->writesize);

	return status;
}

/*
 * Read the data and OOB data from the device, use ECC correction with the
 * data, disable ECC for the OOB data
 */
static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
					   struct nand_chip *chip, uint8_t *buf,
					   int oob_required, int page)
{
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	struct mtd_oob_region oobregion = { };
	int stat, i, status, error;
	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];

	/* Issue read command */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	/* Read data and oob, calculate ECC */
	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);

	/* Get OOB data */
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/* Convert to stored ECC format */
	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);

	/* Pointer to ECC data retrieved from NAND spare area */
	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
	if (error)
		return error;

	oobecc = chip->oob_poi + oobregion.offset;

	for (i = 0; i < chip->ecc.steps; i++) {
		stat = chip->ecc.correct(mtd, buf, oobecc,
					 &tmpecc[i * chip->ecc.bytes]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;

		buf += chip->ecc.size;
		oobecc += chip->ecc.bytes;
	}

	return status;
}

/*
 * Read the data and OOB data from the device, no ECC correction with the
 * data or OOB data
 */
static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	/* Issue read command */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	/* Raw reads can just use the FIFO interface */
	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

/*
 * Write the data and OOB data to the device, use ECC with the data,
 * disable ECC for the OOB data
 */
static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
					    struct nand_chip *chip,
					    const uint8_t *buf,
					    int oob_required, int page)
{
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	struct mtd_oob_region oobregion = { };
	uint8_t *pb;
	int error;

	/* Write data, calculate ECC on outbound data */
	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
	if (error)
		return error;

	/*
	 * The calculated ECC needs some manual work done to it before
	 * committing it to NAND. Process the calculated ECC and place
	 * the resultant values directly into the OOB buffer. */
	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
	if (error)
		return error;

	pb = chip->oob_poi + oobregion.offset;
	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);

	/* Write ECC data to device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/*
 * Write the data and OOB data to the device, no ECC correction with the
 * data or OOB data
 */
static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
						int oob_required, int page)
{
	/* Raw writes can just use the FIFO interface */
	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
{
	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
	dma_cap_mask_t mask;

	if (!host->pdata || !host->pdata->dma_filter) {
		dev_err(mtd->dev.parent, "no DMA platform data\n");
		return -ENOENT;
	}

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
					     "nand-slc");
	if (!host->dma_chan) {
		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
		return -EBUSY;
	}

	return 0;
}

static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
{
	struct lpc32xx_nand_cfg_slc *ncfg;
	struct device_node *np = dev->of_node;

	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
	if (!ncfg)
		return NULL;

	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);

	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
	    !ncfg->rhold || !ncfg->rsetup) {
		dev_err(dev, "chip parameters not specified correctly\n");
		return NULL;
	}

	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);

	return ncfg;
}

/*
 * Probe for NAND controller
 */
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct resource *rc;
	int res;

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
	if (!host)
		return -ENOMEM;

	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
	if (IS_ERR(host->io_base))
		return PTR_ERR(host->io_base);

	host->io_base_dma = rc->start;
	if (pdev->dev.of_node)
		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
	if (!host->ncfg) {
		dev_err(&pdev->dev,
			"Missing or bad NAND config from device tree\n");
		return -ENOENT;
	}
	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
			host->ncfg->wp_gpio, "NAND WP")) {
		dev_err(&pdev->dev, "GPIO not available\n");
		return -EBUSY;
	}
	lpc32xx_wp_disable(host);

	host->pdata = dev_get_platdata(&pdev->dev);

	chip = &host->nand_chip;
	mtd = nand_to_mtd(chip);
	nand_set_controller_data(chip, host);
	nand_set_flash_node(chip, pdev->dev.of_node);
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = &pdev->dev;

	/* Get NAND clock */
	host->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "Clock failure\n");
		res = -ENOENT;
		goto err_exit1;
	}
	clk_prepare_enable(host->clk);

	/* Set NAND IO addresses and command/ready functions */
	chip->IO_ADDR_R = SLC_DATA(host->io_base);
	chip->IO_ADDR_W = SLC_DATA(host->io_base);
	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
	chip->dev_ready = lpc32xx_nand_device_ready;
	chip->chip_delay = 20; /* 20us command delay time */

	/* Init NAND controller */
	lpc32xx_nand_setup(host);

	platform_set_drvdata(pdev, host);

	/* NAND callbacks for LPC32xx SLC hardware */
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
	chip->read_byte = lpc32xx_nand_read_byte;
	chip->read_buf = lpc32xx_nand_read_buf;
	chip->write_buf = lpc32xx_nand_write_buf;
	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
	chip->ecc.correct = nand_correct_data;
	chip->ecc.strength = 1;
	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;

	/*
	 * Allocate a large enough buffer for a single huge page plus
	 * extra space for the spare area and ECC storage area
	 */
	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
				      GFP_KERNEL);
	if (host->data_buf == NULL) {
		res = -ENOMEM;
		goto err_exit2;
	}

	res = lpc32xx_nand_dma_setup(host);
	if (res) {
		res = -EIO;
		goto err_exit2;
	}

	/* Find NAND device */
	res = nand_scan_ident(mtd, 1, NULL);
	if (res)
		goto err_exit3;

	/* OOB and ECC CPU and DMA work areas */
	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);

	/*
	 * Small page FLASH has a unique OOB layout, but large and huge
	 * page FLASH use the standard layout. Small page FLASH uses a
	 * custom BBT marker layout.
	 */
	if (mtd->writesize <= 512)
		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);

	/* These sizes remain the same regardless of page size */
	chip->ecc.size = 256;
	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
	chip->ecc.prepad = chip->ecc.postpad = 0;

	/*
	 * Use a custom BBT marker setup for small page FLASH that
	 * won't interfere with the ECC layout. Large and huge page
	 * FLASH use the standard layout.
	 */
	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
	    mtd->writesize <= 512) {
		chip->bbt_td = &bbt_smallpage_main_descr;
		chip->bbt_md = &bbt_smallpage_mirror_descr;
	}

	/*
	 * Fills out all the uninitialized function pointers with the defaults
	 */
	res = nand_scan_tail(mtd);
	if (res)
		goto err_exit3;

	mtd->name = "nxp_lpc3220_slc";
	res = mtd_device_register(mtd, host->ncfg->parts,
				  host->ncfg->num_parts);
	if (!res)
		return res;

	nand_release(mtd);

err_exit3:
	dma_release_channel(host->dma_chan);
err_exit2:
	clk_disable_unprepare(host->clk);
err_exit1:
	lpc32xx_wp_enable(host);

	return res;
}

/*
 * Remove NAND device.
 */
static int lpc32xx_nand_remove(struct platform_device *pdev)
{
	uint32_t tmp;
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);

	nand_release(mtd);
	dma_release_channel(host->dma_chan);

	/* Force CE high */
	tmp = readl(SLC_CTRL(host->io_base));
	tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CTRL(host->io_base));

	clk_disable_unprepare(host->clk);
	lpc32xx_wp_enable(host);

	return 0;
}

#ifdef CONFIG_PM
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

	/* Re-enable NAND clock */
	clk_prepare_enable(host->clk);

	/* Fresh init of NAND controller */
	lpc32xx_nand_setup(host);

	/* Disable write protect */
	lpc32xx_wp_disable(host);

	return 0;
}

static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
	uint32_t tmp;
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

	/* Force CE high */
	tmp = readl(SLC_CTRL(host->io_base));
	tmp &= ~SLCCFG_CE_LOW;
	writel(tmp, SLC_CTRL(host->io_base));

	/* Enable write protect for safety */
	lpc32xx_wp_enable(host);

	/* Disable clock */
	clk_disable_unprepare(host->clk);

	return 0;
}

#else
#define lpc32xx_nand_resume NULL
#define lpc32xx_nand_suspend NULL
#endif

static const struct of_device_id lpc32xx_nand_match[] = {
	{ .compatible = "nxp,lpc3220-slc" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);

static struct platform_driver lpc32xx_nand_driver = {
	.probe		= lpc32xx_nand_probe,
	.remove		= lpc32xx_nand_remove,
	.resume		= lpc32xx_nand_resume,
	.suspend	= lpc32xx_nand_suspend,
	.driver		= {
		.name	= LPC32XX_MODNAME,
		.of_match_table = lpc32xx_nand_match,
	},
};

module_platform_driver(lpc32xx_nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");