Free Electrons

Electrons Libres - Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
/*
 * kgdbts is a test suite for kgdb for the sole purpose of validating
 * that key pieces of the kgdb internals are working properly such as
 * HW/SW breakpoints, single stepping, and NMI.
 *
 * Created by: Jason Wessel <jason.wessel@windriver.com>
 *
 * Copyright (c) 2008 Wind River Systems, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */
/* Information about the kgdb test suite.
 * -------------------------------------
 *
 * The kgdb test suite is designed as a KGDB I/O module which
 * simulates the communications that a debugger would have with kgdb.
 * The tests are broken up in to a line by line and referenced here as
 * a "get" which is kgdb requesting input and "put" which is kgdb
 * sending a response.
 *
 * The kgdb suite can be invoked from the kernel command line
 * arguments system or executed dynamically at run time.  The test
 * suite uses the variable "kgdbts" to obtain the information about
 * which tests to run and to configure the verbosity level.  The
 * following are the various characters you can use with the kgdbts=
 * line:
 *
 * When using the "kgdbts=" you only choose one of the following core
 * test types:
 * A = Run all the core tests silently
 * V1 = Run all the core tests with minimal output
 * V2 = Run all the core tests in debug mode
 *
 * You can also specify optional tests:
 * N## = Go to sleep with interrupts of for ## seconds
 *       to test the HW NMI watchdog
 * F## = Break at do_fork for ## iterations
 * S## = Break at sys_open for ## iterations
 * I## = Run the single step test ## iterations
 *
 * NOTE: that the do_fork and sys_open tests are mutually exclusive.
 *
 * To invoke the kgdb test suite from boot you use a kernel start
 * argument as follows:
 * 	kgdbts=V1 kgdbwait
 * Or if you wanted to perform the NMI test for 6 seconds and do_fork
 * test for 100 forks, you could use:
 * 	kgdbts=V1N6F100 kgdbwait
 *
 * The test suite can also be invoked at run time with:
 *	echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts
 * Or as another example:
 *	echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts
 *
 * When developing a new kgdb arch specific implementation or
 * using these tests for the purpose of regression testing,
 * several invocations are required.
 *
 * 1) Boot with the test suite enabled by using the kernel arguments
 *       "kgdbts=V1F100 kgdbwait"
 *    ## If kgdb arch specific implementation has NMI use
 *       "kgdbts=V1N6F100
 *
 * 2) After the system boot run the basic test.
 * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts
 *
 * 3) Run the concurrency tests.  It is best to use n+1
 *    while loops where n is the number of cpus you have
 *    in your system.  The example below uses only two
 *    loops.
 *
 * ## This tests break points on sys_open
 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
 * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts
 * fg # and hit control-c
 * fg # and hit control-c
 * ## This tests break points on do_fork
 * while [ 1 ] ; do date > /dev/null ; done &
 * while [ 1 ] ; do date > /dev/null ; done &
 * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts
 * fg # and hit control-c
 *
 */

#include <linux/kernel.h>
#include <linux/kgdb.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/nmi.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/sched/task.h>

#include <asm/sections.h>

#define v1printk(a...) do { \
	if (verbose) \
		printk(KERN_INFO a); \
	} while (0)
#define v2printk(a...) do { \
	if (verbose > 1) \
		printk(KERN_INFO a); \
		touch_nmi_watchdog();	\
	} while (0)
#define eprintk(a...) do { \
		printk(KERN_ERR a); \
		WARN_ON(1); \
	} while (0)
#define MAX_CONFIG_LEN		40

static struct kgdb_io kgdbts_io_ops;
static char get_buf[BUFMAX];
static int get_buf_cnt;
static char put_buf[BUFMAX];
static int put_buf_cnt;
static char scratch_buf[BUFMAX];
static int verbose;
static int repeat_test;
static int test_complete;
static int send_ack;
static int final_ack;
static int force_hwbrks;
static int hwbreaks_ok;
static int hw_break_val;
static int hw_break_val2;
static int cont_instead_of_sstep;
static unsigned long cont_thread_id;
static unsigned long sstep_thread_id;
#if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC)
static int arch_needs_sstep_emulation = 1;
#else
static int arch_needs_sstep_emulation;
#endif
static unsigned long cont_addr;
static unsigned long sstep_addr;
static int restart_from_top_after_write;
static int sstep_state;

/* Storage for the registers, in GDB format. */
static unsigned long kgdbts_gdb_regs[(NUMREGBYTES +
					sizeof(unsigned long) - 1) /
					sizeof(unsigned long)];
static struct pt_regs kgdbts_regs;

/* -1 = init not run yet, 0 = unconfigured, 1 = configured. */
static int configured		= -1;

#ifdef CONFIG_KGDB_TESTS_BOOT_STRING
static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING;
#else
static char config[MAX_CONFIG_LEN];
#endif
static struct kparam_string kps = {
	.string			= config,
	.maxlen			= MAX_CONFIG_LEN,
};

static void fill_get_buf(char *buf);

struct test_struct {
	char *get;
	char *put;
	void (*get_handler)(char *);
	int (*put_handler)(char *, char *);
};

struct test_state {
	char *name;
	struct test_struct *tst;
	int idx;
	int (*run_test) (int, int);
	int (*validate_put) (char *);
};

static struct test_state ts;

static int kgdbts_unreg_thread(void *ptr)
{
	/* Wait until the tests are complete and then ungresiter the I/O
	 * driver.
	 */
	while (!final_ack)
		msleep_interruptible(1500);
	/* Pause for any other threads to exit after final ack. */
	msleep_interruptible(1000);
	if (configured)
		kgdb_unregister_io_module(&kgdbts_io_ops);
	configured = 0;

	return 0;
}

/* This is noinline such that it can be used for a single location to
 * place a breakpoint
 */
static noinline void kgdbts_break_test(void)
{
	v2printk("kgdbts: breakpoint complete\n");
}

/* Lookup symbol info in the kernel */
static unsigned long lookup_addr(char *arg)
{
	unsigned long addr = 0;

	if (!strcmp(arg, "kgdbts_break_test"))
		addr = (unsigned long)kgdbts_break_test;
	else if (!strcmp(arg, "sys_open"))
		addr = (unsigned long)do_sys_open;
	else if (!strcmp(arg, "do_fork"))
		addr = (unsigned long)_do_fork;
	else if (!strcmp(arg, "hw_break_val"))
		addr = (unsigned long)&hw_break_val;
	addr = (unsigned long) dereference_function_descriptor((void *)addr);
	return addr;
}

static void break_helper(char *bp_type, char *arg, unsigned long vaddr)
{
	unsigned long addr;

	if (arg)
		addr = lookup_addr(arg);
	else
		addr = vaddr;

	sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr,
		BREAK_INSTR_SIZE);
	fill_get_buf(scratch_buf);
}

static void sw_break(char *arg)
{
	break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0);
}

static void sw_rem_break(char *arg)
{
	break_helper(force_hwbrks ? "z1" : "z0", arg, 0);
}

static void hw_break(char *arg)
{
	break_helper("Z1", arg, 0);
}

static void hw_rem_break(char *arg)
{
	break_helper("z1", arg, 0);
}

static void hw_write_break(char *arg)
{
	break_helper("Z2", arg, 0);
}

static void hw_rem_write_break(char *arg)
{
	break_helper("z2", arg, 0);
}

static void hw_access_break(char *arg)
{
	break_helper("Z4", arg, 0);
}

static void hw_rem_access_break(char *arg)
{
	break_helper("z4", arg, 0);
}

static void hw_break_val_access(void)
{
	hw_break_val2 = hw_break_val;
}

static void hw_break_val_write(void)
{
	hw_break_val++;
}

static int get_thread_id_continue(char *put_str, char *arg)
{
	char *ptr = &put_str[11];

	if (put_str[1] != 'T' || put_str[2] != '0')
		return 1;
	kgdb_hex2long(&ptr, &cont_thread_id);
	return 0;
}

static int check_and_rewind_pc(char *put_str, char *arg)
{
	unsigned long addr = lookup_addr(arg);
	unsigned long ip;
	int offset = 0;

	kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
		 NUMREGBYTES);
	gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
	ip = instruction_pointer(&kgdbts_regs);
	v2printk("Stopped at IP: %lx\n", ip);
#ifdef GDB_ADJUSTS_BREAK_OFFSET
	/* On some arches, a breakpoint stop requires it to be decremented */
	if (addr + BREAK_INSTR_SIZE == ip)
		offset = -BREAK_INSTR_SIZE;
#endif

	if (arch_needs_sstep_emulation && sstep_addr &&
	    ip + offset == sstep_addr &&
	    ((!strcmp(arg, "sys_open") || !strcmp(arg, "do_fork")))) {
		/* This is special case for emulated single step */
		v2printk("Emul: rewind hit single step bp\n");
		restart_from_top_after_write = 1;
	} else if (strcmp(arg, "silent") && ip + offset != addr) {
		eprintk("kgdbts: BP mismatch %lx expected %lx\n",
			   ip + offset, addr);
		return 1;
	}
	/* Readjust the instruction pointer if needed */
	ip += offset;
	cont_addr = ip;
#ifdef GDB_ADJUSTS_BREAK_OFFSET
	instruction_pointer_set(&kgdbts_regs, ip);
#endif
	return 0;
}

static int check_single_step(char *put_str, char *arg)
{
	unsigned long addr = lookup_addr(arg);
	static int matched_id;

	/*
	 * From an arch indepent point of view the instruction pointer
	 * should be on a different instruction
	 */
	kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
		 NUMREGBYTES);
	gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
	v2printk("Singlestep stopped at IP: %lx\n",
		   instruction_pointer(&kgdbts_regs));

	if (sstep_thread_id != cont_thread_id) {
		/*
		 * Ensure we stopped in the same thread id as before, else the
		 * debugger should continue until the original thread that was
		 * single stepped is scheduled again, emulating gdb's behavior.
		 */
		v2printk("ThrID does not match: %lx\n", cont_thread_id);
		if (arch_needs_sstep_emulation) {
			if (matched_id &&
			    instruction_pointer(&kgdbts_regs) != addr)
				goto continue_test;
			matched_id++;
			ts.idx -= 2;
			sstep_state = 0;
			return 0;
		}
		cont_instead_of_sstep = 1;
		ts.idx -= 4;
		return 0;
	}
continue_test:
	matched_id = 0;
	if (instruction_pointer(&kgdbts_regs) == addr) {
		eprintk("kgdbts: SingleStep failed at %lx\n",
			   instruction_pointer(&kgdbts_regs));
		return 1;
	}

	return 0;
}

static void write_regs(char *arg)
{
	memset(scratch_buf, 0, sizeof(scratch_buf));
	scratch_buf[0] = 'G';
	pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs);
	kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES);
	fill_get_buf(scratch_buf);
}

static void skip_back_repeat_test(char *arg)
{
	int go_back = simple_strtol(arg, NULL, 10);

	repeat_test--;
	if (repeat_test <= 0)
		ts.idx++;
	else
		ts.idx -= go_back;
	fill_get_buf(ts.tst[ts.idx].get);
}

static int got_break(char *put_str, char *arg)
{
	test_complete = 1;
	if (!strncmp(put_str+1, arg, 2)) {
		if (!strncmp(arg, "T0", 2))
			test_complete = 2;
		return 0;
	}
	return 1;
}

static void get_cont_catch(char *arg)
{
	/* Always send detach because the test is completed at this point */
	fill_get_buf("D");
}

static int put_cont_catch(char *put_str, char *arg)
{
	/* This is at the end of the test and we catch any and all input */
	v2printk("kgdbts: cleanup task: %lx\n", sstep_thread_id);
	ts.idx--;
	return 0;
}

static int emul_reset(char *put_str, char *arg)
{
	if (strncmp(put_str, "$OK", 3))
		return 1;
	if (restart_from_top_after_write) {
		restart_from_top_after_write = 0;
		ts.idx = -1;
	}
	return 0;
}

static void emul_sstep_get(char *arg)
{
	if (!arch_needs_sstep_emulation) {
		if (cont_instead_of_sstep) {
			cont_instead_of_sstep = 0;
			fill_get_buf("c");
		} else {
			fill_get_buf(arg);
		}
		return;
	}
	switch (sstep_state) {
	case 0:
		v2printk("Emulate single step\n");
		/* Start by looking at the current PC */
		fill_get_buf("g");
		break;
	case 1:
		/* set breakpoint */
		break_helper("Z0", NULL, sstep_addr);
		break;
	case 2:
		/* Continue */
		fill_get_buf("c");
		break;
	case 3:
		/* Clear breakpoint */
		break_helper("z0", NULL, sstep_addr);
		break;
	default:
		eprintk("kgdbts: ERROR failed sstep get emulation\n");
	}
	sstep_state++;
}

static int emul_sstep_put(char *put_str, char *arg)
{
	if (!arch_needs_sstep_emulation) {
		char *ptr = &put_str[11];
		if (put_str[1] != 'T' || put_str[2] != '0')
			return 1;
		kgdb_hex2long(&ptr, &sstep_thread_id);
		return 0;
	}
	switch (sstep_state) {
	case 1:
		/* validate the "g" packet to get the IP */
		kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
			 NUMREGBYTES);
		gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
		v2printk("Stopped at IP: %lx\n",
			 instruction_pointer(&kgdbts_regs));
		/* Want to stop at IP + break instruction size by default */
		sstep_addr = cont_addr + BREAK_INSTR_SIZE;
		break;
	case 2:
		if (strncmp(put_str, "$OK", 3)) {
			eprintk("kgdbts: failed sstep break set\n");
			return 1;
		}
		break;
	case 3:
		if (strncmp(put_str, "$T0", 3)) {
			eprintk("kgdbts: failed continue sstep\n");
			return 1;
		} else {
			char *ptr = &put_str[11];
			kgdb_hex2long(&ptr, &sstep_thread_id);
		}
		break;
	case 4:
		if (strncmp(put_str, "$OK", 3)) {
			eprintk("kgdbts: failed sstep break unset\n");
			return 1;
		}
		/* Single step is complete so continue on! */
		sstep_state = 0;
		return 0;
	default:
		eprintk("kgdbts: ERROR failed sstep put emulation\n");
	}

	/* Continue on the same test line until emulation is complete */
	ts.idx--;
	return 0;
}

static int final_ack_set(char *put_str, char *arg)
{
	if (strncmp(put_str+1, arg, 2))
		return 1;
	final_ack = 1;
	return 0;
}
/*
 * Test to plant a breakpoint and detach, which should clear out the
 * breakpoint and restore the original instruction.
 */
static struct test_struct plant_and_detach_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
	{ "D", "OK" }, /* Detach */
	{ "", "" },
};

/*
 * Simple test to write in a software breakpoint, check for the
 * correct stop location and detach.
 */
static struct test_struct sw_breakpoint_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
	{ "c", "T0*", }, /* Continue */
	{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs },
	{ "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
	{ "D", "OK" }, /* Detach */
	{ "D", "OK", NULL,  got_break }, /* On success we made it here */
	{ "", "" },
};

/*
 * Test a known bad memory read location to test the fault handler and
 * read bytes 1-8 at the bad address
 */
static struct test_struct bad_read_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "m0,1", "E*" }, /* read 1 byte at address 1 */
	{ "m0,2", "E*" }, /* read 1 byte at address 2 */
	{ "m0,3", "E*" }, /* read 1 byte at address 3 */
	{ "m0,4", "E*" }, /* read 1 byte at address 4 */
	{ "m0,5", "E*" }, /* read 1 byte at address 5 */
	{ "m0,6", "E*" }, /* read 1 byte at address 6 */
	{ "m0,7", "E*" }, /* read 1 byte at address 7 */
	{ "m0,8", "E*" }, /* read 1 byte at address 8 */
	{ "D", "OK" }, /* Detach which removes all breakpoints and continues */
	{ "", "" },
};

/*
 * Test for hitting a breakpoint, remove it, single step, plant it
 * again and detach.
 */
static struct test_struct singlestep_break_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
	{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
	{ "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
	{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs }, /* Write registers */
	{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
	{ "g", "kgdbts_break_test", NULL, check_single_step },
	{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
	{ "c", "T0*", }, /* Continue */
	{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs }, /* Write registers */
	{ "D", "OK" }, /* Remove all breakpoints and continues */
	{ "", "" },
};

/*
 * Test for hitting a breakpoint at do_fork for what ever the number
 * of iterations required by the variable repeat_test.
 */
static struct test_struct do_fork_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */
	{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
	{ "do_fork", "OK", sw_rem_break }, /*remove breakpoint */
	{ "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */
	{ "write", "OK", write_regs, emul_reset }, /* Write registers */
	{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
	{ "g", "do_fork", NULL, check_single_step },
	{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */
	{ "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
	{ "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
	{ "", "", get_cont_catch, put_cont_catch },
};

/* Test for hitting a breakpoint at sys_open for what ever the number
 * of iterations required by the variable repeat_test.
 */
static struct test_struct sys_open_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "sys_open", "OK", sw_break, }, /* set sw breakpoint */
	{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
	{ "sys_open", "OK", sw_rem_break }, /*remove breakpoint */
	{ "g", "sys_open", NULL, check_and_rewind_pc }, /* check location */
	{ "write", "OK", write_regs, emul_reset }, /* Write registers */
	{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
	{ "g", "sys_open", NULL, check_single_step },
	{ "sys_open", "OK", sw_break, }, /* set sw breakpoint */
	{ "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
	{ "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
	{ "", "", get_cont_catch, put_cont_catch },
};

/*
 * Test for hitting a simple hw breakpoint
 */
static struct test_struct hw_breakpoint_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */
	{ "c", "T0*", }, /* Continue */
	{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs },
	{ "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */
	{ "D", "OK" }, /* Detach */
	{ "D", "OK", NULL,  got_break }, /* On success we made it here */
	{ "", "" },
};

/*
 * Test for hitting a hw write breakpoint
 */
static struct test_struct hw_write_break_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */
	{ "c", "T0*", NULL, got_break }, /* Continue */
	{ "g", "silent", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs },
	{ "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */
	{ "D", "OK" }, /* Detach */
	{ "D", "OK", NULL,  got_break }, /* On success we made it here */
	{ "", "" },
};

/*
 * Test for hitting a hw access breakpoint
 */
static struct test_struct hw_access_break_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */
	{ "c", "T0*", NULL, got_break }, /* Continue */
	{ "g", "silent", NULL, check_and_rewind_pc },
	{ "write", "OK", write_regs },
	{ "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */
	{ "D", "OK" }, /* Detach */
	{ "D", "OK", NULL,  got_break }, /* On success we made it here */
	{ "", "" },
};

/*
 * Test for hitting a hw access breakpoint
 */
static struct test_struct nmi_sleep_test[] = {
	{ "?", "S0*" }, /* Clear break points */
	{ "c", "T0*", NULL, got_break }, /* Continue */
	{ "D", "OK" }, /* Detach */
	{ "D", "OK", NULL,  got_break }, /* On success we made it here */
	{ "", "" },
};

static void fill_get_buf(char *buf)
{
	unsigned char checksum = 0;
	int count = 0;
	char ch;

	strcpy(get_buf, "$");
	strcat(get_buf, buf);
	while ((ch = buf[count])) {
		checksum += ch;
		count++;
	}
	strcat(get_buf, "#");
	get_buf[count + 2] = hex_asc_hi(checksum);
	get_buf[count + 3] = hex_asc_lo(checksum);
	get_buf[count + 4] = '\0';
	v2printk("get%i: %s\n", ts.idx, get_buf);
}

static int validate_simple_test(char *put_str)
{
	char *chk_str;

	if (ts.tst[ts.idx].put_handler)
		return ts.tst[ts.idx].put_handler(put_str,
			ts.tst[ts.idx].put);

	chk_str = ts.tst[ts.idx].put;
	if (*put_str == '$')
		put_str++;

	while (*chk_str != '\0' && *put_str != '\0') {
		/* If someone does a * to match the rest of the string, allow
		 * it, or stop if the received string is complete.
		 */
		if (*put_str == '#' || *chk_str == '*')
			return 0;
		if (*put_str != *chk_str)
			return 1;

		chk_str++;
		put_str++;
	}
	if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#'))
		return 0;

	return 1;
}

static int run_simple_test(int is_get_char, int chr)
{
	int ret = 0;
	if (is_get_char) {
		/* Send an ACK on the get if a prior put completed and set the
		 * send ack variable
		 */
		if (send_ack) {
			send_ack = 0;
			return '+';
		}
		/* On the first get char, fill the transmit buffer and then
		 * take from the get_string.
		 */
		if (get_buf_cnt == 0) {
			if (ts.tst[ts.idx].get_handler)
				ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get);
			else
				fill_get_buf(ts.tst[ts.idx].get);
		}

		if (get_buf[get_buf_cnt] == '\0') {
			eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n",
			   ts.name, ts.idx);
			get_buf_cnt = 0;
			fill_get_buf("D");
		}
		ret = get_buf[get_buf_cnt];
		get_buf_cnt++;
		return ret;
	}

	/* This callback is a put char which is when kgdb sends data to
	 * this I/O module.
	 */
	if (ts.tst[ts.idx].get[0] == '\0' && ts.tst[ts.idx].put[0] == '\0' &&
	    !ts.tst[ts.idx].get_handler) {
		eprintk("kgdbts: ERROR: beyond end of test on"
			   " '%s' line %i\n", ts.name, ts.idx);
		return 0;
	}

	if (put_buf_cnt >= BUFMAX) {
		eprintk("kgdbts: ERROR: put buffer overflow on"
			   " '%s' line %i\n", ts.name, ts.idx);
		put_buf_cnt = 0;
		return 0;
	}
	/* Ignore everything until the first valid packet start '$' */
	if (put_buf_cnt == 0 && chr != '$')
		return 0;

	put_buf[put_buf_cnt] = chr;
	put_buf_cnt++;

	/* End of packet == #XX so look for the '#' */
	if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') {
		if (put_buf_cnt >= BUFMAX) {
			eprintk("kgdbts: ERROR: put buffer overflow on"
				" '%s' line %i\n", ts.name, ts.idx);
			put_buf_cnt = 0;
			return 0;
		}
		put_buf[put_buf_cnt] = '\0';
		v2printk("put%i: %s\n", ts.idx, put_buf);
		/* Trigger check here */
		if (ts.validate_put && ts.validate_put(put_buf)) {
			eprintk("kgdbts: ERROR PUT: end of test "
			   "buffer on '%s' line %i expected %s got %s\n",
			   ts.name, ts.idx, ts.tst[ts.idx].put, put_buf);
		}
		ts.idx++;
		put_buf_cnt = 0;
		get_buf_cnt = 0;
		send_ack = 1;
	}
	return 0;
}

static void init_simple_test(void)
{
	memset(&ts, 0, sizeof(ts));
	ts.run_test = run_simple_test;
	ts.validate_put = validate_simple_test;
}

static void run_plant_and_detach_test(int is_early)
{
	char before[BREAK_INSTR_SIZE];
	char after[BREAK_INSTR_SIZE];

	probe_kernel_read(before, (char *)kgdbts_break_test,
	  BREAK_INSTR_SIZE);
	init_simple_test();
	ts.tst = plant_and_detach_test;
	ts.name = "plant_and_detach_test";
	/* Activate test with initial breakpoint */
	if (!is_early)
		kgdb_breakpoint();
	probe_kernel_read(after, (char *)kgdbts_break_test,
	  BREAK_INSTR_SIZE);
	if (memcmp(before, after, BREAK_INSTR_SIZE)) {
		printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n");
		panic("kgdb memory corruption");
	}

	/* complete the detach test */
	if (!is_early)
		kgdbts_break_test();
}

static void run_breakpoint_test(int is_hw_breakpoint)
{
	test_complete = 0;
	init_simple_test();
	if (is_hw_breakpoint) {
		ts.tst = hw_breakpoint_test;
		ts.name = "hw_breakpoint_test";
	} else {
		ts.tst = sw_breakpoint_test;
		ts.name = "sw_breakpoint_test";
	}
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
	/* run code with the break point in it */
	kgdbts_break_test();
	kgdb_breakpoint();

	if (test_complete)
		return;

	eprintk("kgdbts: ERROR %s test failed\n", ts.name);
	if (is_hw_breakpoint)
		hwbreaks_ok = 0;
}

static void run_hw_break_test(int is_write_test)
{
	test_complete = 0;
	init_simple_test();
	if (is_write_test) {
		ts.tst = hw_write_break_test;
		ts.name = "hw_write_break_test";
	} else {
		ts.tst = hw_access_break_test;
		ts.name = "hw_access_break_test";
	}
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
	hw_break_val_access();
	if (is_write_test) {
		if (test_complete == 2) {
			eprintk("kgdbts: ERROR %s broke on access\n",
				ts.name);
			hwbreaks_ok = 0;
		}
		hw_break_val_write();
	}
	kgdb_breakpoint();

	if (test_complete == 1)
		return;

	eprintk("kgdbts: ERROR %s test failed\n", ts.name);
	hwbreaks_ok = 0;
}

static void run_nmi_sleep_test(int nmi_sleep)
{
	unsigned long flags;

	init_simple_test();
	ts.tst = nmi_sleep_test;
	ts.name = "nmi_sleep_test";
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
	local_irq_save(flags);
	mdelay(nmi_sleep*1000);
	touch_nmi_watchdog();
	local_irq_restore(flags);
	if (test_complete != 2)
		eprintk("kgdbts: ERROR nmi_test did not hit nmi\n");
	kgdb_breakpoint();
	if (test_complete == 1)
		return;

	eprintk("kgdbts: ERROR %s test failed\n", ts.name);
}

static void run_bad_read_test(void)
{
	init_simple_test();
	ts.tst = bad_read_test;
	ts.name = "bad_read_test";
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
}

static void run_do_fork_test(void)
{
	init_simple_test();
	ts.tst = do_fork_test;
	ts.name = "do_fork_test";
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
}

static void run_sys_open_test(void)
{
	init_simple_test();
	ts.tst = sys_open_test;
	ts.name = "sys_open_test";
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
}

static void run_singlestep_break_test(void)
{
	init_simple_test();
	ts.tst = singlestep_break_test;
	ts.name = "singlestep_breakpoint_test";
	/* Activate test with initial breakpoint */
	kgdb_breakpoint();
	kgdbts_break_test();
	kgdbts_break_test();
}

static void kgdbts_run_tests(void)
{
	char *ptr;
	int fork_test = 0;
	int do_sys_open_test = 0;
	int sstep_test = 1000;
	int nmi_sleep = 0;
	int i;

	ptr = strchr(config, 'F');
	if (ptr)
		fork_test = simple_strtol(ptr + 1, NULL, 10);
	ptr = strchr(config, 'S');
	if (ptr)
		do_sys_open_test = simple_strtol(ptr + 1, NULL, 10);
	ptr = strchr(config, 'N');
	if (ptr)
		nmi_sleep = simple_strtol(ptr+1, NULL, 10);
	ptr = strchr(config, 'I');
	if (ptr)
		sstep_test = simple_strtol(ptr+1, NULL, 10);

	/* All HW break point tests */
	if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) {
		hwbreaks_ok = 1;
		v1printk("kgdbts:RUN hw breakpoint test\n");
		run_breakpoint_test(1);
		v1printk("kgdbts:RUN hw write breakpoint test\n");
		run_hw_break_test(1);
		v1printk("kgdbts:RUN access write breakpoint test\n");
		run_hw_break_test(0);
	}

	/* required internal KGDB tests */
	v1printk("kgdbts:RUN plant and detach test\n");
	run_plant_and_detach_test(0);
	v1printk("kgdbts:RUN sw breakpoint test\n");
	run_breakpoint_test(0);
	v1printk("kgdbts:RUN bad memory access test\n");
	run_bad_read_test();
	v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test);
	for (i = 0; i < sstep_test; i++) {
		run_singlestep_break_test();
		if (i % 100 == 0)
			v1printk("kgdbts:RUN singlestep [%i/%i]\n",
				 i, sstep_test);
	}

	/* ===Optional tests=== */

	if (nmi_sleep) {
		v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep);
		run_nmi_sleep_test(nmi_sleep);
	}

	/* If the do_fork test is run it will be the last test that is
	 * executed because a kernel thread will be spawned at the very
	 * end to unregister the debug hooks.
	 */
	if (fork_test) {
		repeat_test = fork_test;
		printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n",
			repeat_test);
		kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
		run_do_fork_test();
		return;
	}

	/* If the sys_open test is run it will be the last test that is
	 * executed because a kernel thread will be spawned at the very
	 * end to unregister the debug hooks.
	 */
	if (do_sys_open_test) {
		repeat_test = do_sys_open_test;
		printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n",
			repeat_test);
		kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
		run_sys_open_test();
		return;
	}
	/* Shutdown and unregister */
	kgdb_unregister_io_module(&kgdbts_io_ops);
	configured = 0;
}

static int kgdbts_option_setup(char *opt)
{
	if (strlen(opt) >= MAX_CONFIG_LEN) {
		printk(KERN_ERR "kgdbts: config string too long\n");
		return -ENOSPC;
	}
	strcpy(config, opt);

	verbose = 0;
	if (strstr(config, "V1"))
		verbose = 1;
	if (strstr(config, "V2"))
		verbose = 2;

	return 0;
}

__setup("kgdbts=", kgdbts_option_setup);

static int configure_kgdbts(void)
{
	int err = 0;

	if (!strlen(config) || isspace(config[0]))
		goto noconfig;
	err = kgdbts_option_setup(config);
	if (err)
		goto noconfig;

	final_ack = 0;
	run_plant_and_detach_test(1);

	err = kgdb_register_io_module(&kgdbts_io_ops);
	if (err) {
		configured = 0;
		return err;
	}
	configured = 1;
	kgdbts_run_tests();

	return err;

noconfig:
	config[0] = 0;
	configured = 0;

	return err;
}

static int __init init_kgdbts(void)
{
	/* Already configured? */
	if (configured == 1)
		return 0;

	return configure_kgdbts();
}
device_initcall(init_kgdbts);

static int kgdbts_get_char(void)
{
	int val = 0;

	if (ts.run_test)
		val = ts.run_test(1, 0);

	return val;
}

static void kgdbts_put_char(u8 chr)
{
	if (ts.run_test)
		ts.run_test(0, chr);
}

static int param_set_kgdbts_var(const char *kmessage, struct kernel_param *kp)
{
	int len = strlen(kmessage);

	if (len >= MAX_CONFIG_LEN) {
		printk(KERN_ERR "kgdbts: config string too long\n");
		return -ENOSPC;
	}

	/* Only copy in the string if the init function has not run yet */
	if (configured < 0) {
		strcpy(config, kmessage);
		return 0;
	}

	if (configured == 1) {
		printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n");
		return -EBUSY;
	}

	strcpy(config, kmessage);
	/* Chop out \n char as a result of echo */
	if (config[len - 1] == '\n')
		config[len - 1] = '\0';

	/* Go and configure with the new params. */
	return configure_kgdbts();
}

static void kgdbts_pre_exp_handler(void)
{
	/* Increment the module count when the debugger is active */
	if (!kgdb_connected)
		try_module_get(THIS_MODULE);
}

static void kgdbts_post_exp_handler(void)
{
	/* decrement the module count when the debugger detaches */
	if (!kgdb_connected)
		module_put(THIS_MODULE);
}

static struct kgdb_io kgdbts_io_ops = {
	.name			= "kgdbts",
	.read_char		= kgdbts_get_char,
	.write_char		= kgdbts_put_char,
	.pre_exception		= kgdbts_pre_exp_handler,
	.post_exception		= kgdbts_post_exp_handler,
};

/*
 * not really modular, but the easiest way to keep compat with existing
 * bootargs behaviour is to continue using module_param here.
 */
module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644);
MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]");