Free Electrons

Electrons Libres - Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/*
 * Linux-DVB Driver for DiBcom's DiB0070 base-band RF Tuner.
 *
 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 *
 *
 * This code is more or less generated from another driver, please
 * excuse some codingstyle oddities.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/mutex.h>

#include "dvb_frontend.h"

#include "dib0070.h"
#include "dibx000_common.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

#define dprintk(fmt, arg...) do {					\
	if (debug)							\
		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\
		       __func__, ##arg);				\
} while (0)

#define DIB0070_P1D  0x00
#define DIB0070_P1F  0x01
#define DIB0070_P1G  0x03
#define DIB0070S_P1A 0x02

struct dib0070_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend *fe;
	const struct dib0070_config *cfg;
	u16 wbd_ff_offset;
	u8 revision;

	enum frontend_tune_state tune_state;
	u32 current_rf;

	/* for the captrim binary search */
	s8 step;
	u16 adc_diff;

	s8 captrim;
	s8 fcaptrim;
	u16 lo4;

	const struct dib0070_tuning *current_tune_table_index;
	const struct dib0070_lna_match *lna_match;

	u8  wbd_gain_current;
	u16 wbd_offset_3_3[2];

	/* for the I2C transfer */
	struct i2c_msg msg[2];
	u8 i2c_write_buffer[3];
	u8 i2c_read_buffer[2];
	struct mutex i2c_buffer_lock;
};

static u16 dib0070_read_reg(struct dib0070_state *state, u8 reg)
{
	u16 ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock\n");
		return 0;
	}

	state->i2c_write_buffer[0] = reg;

	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
	state->msg[0].addr = state->cfg->i2c_address;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 1;
	state->msg[1].addr = state->cfg->i2c_address;
	state->msg[1].flags = I2C_M_RD;
	state->msg[1].buf = state->i2c_read_buffer;
	state->msg[1].len = 2;

	if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
		pr_warn("DiB0070 I2C read failed\n");
		ret = 0;
	} else
		ret = (state->i2c_read_buffer[0] << 8)
			| state->i2c_read_buffer[1];

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

static int dib0070_write_reg(struct dib0070_state *state, u8 reg, u16 val)
{
	int ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock\n");
		return -EINVAL;
	}
	state->i2c_write_buffer[0] = reg;
	state->i2c_write_buffer[1] = val >> 8;
	state->i2c_write_buffer[2] = val & 0xff;

	memset(state->msg, 0, sizeof(struct i2c_msg));
	state->msg[0].addr = state->cfg->i2c_address;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 3;

	if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
		pr_warn("DiB0070 I2C write failed\n");
		ret = -EREMOTEIO;
	} else
		ret = 0;

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

#define HARD_RESET(state) do { \
    state->cfg->sleep(state->fe, 0); \
    if (state->cfg->reset) { \
	state->cfg->reset(state->fe,1); msleep(10); \
	state->cfg->reset(state->fe,0); msleep(10); \
    } \
} while (0)

static int dib0070_set_bandwidth(struct dvb_frontend *fe)
	{
	struct dib0070_state *state = fe->tuner_priv;
	u16 tmp = dib0070_read_reg(state, 0x02) & 0x3fff;

	if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 7000)
		tmp |= (0 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 6000)
		tmp |= (1 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 5000)
		tmp |= (2 << 14);
	else
		tmp |= (3 << 14);

	dib0070_write_reg(state, 0x02, tmp);

	/* sharpen the BB filter in ISDB-T to have higher immunity to adjacent channels */
	if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) {
		u16 value = dib0070_read_reg(state, 0x17);

		dib0070_write_reg(state, 0x17, value & 0xfffc);
		tmp = dib0070_read_reg(state, 0x01) & 0x01ff;
		dib0070_write_reg(state, 0x01, tmp | (60 << 9));

		dib0070_write_reg(state, 0x17, value);
	}
	return 0;
}

static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state *tune_state)
{
	int8_t step_sign;
	u16 adc;
	int ret = 0;

	if (*tune_state == CT_TUNER_STEP_0) {
		dib0070_write_reg(state, 0x0f, 0xed10);
		dib0070_write_reg(state, 0x17,    0x0034);

		dib0070_write_reg(state, 0x18, 0x0032);
		state->step = state->captrim = state->fcaptrim = 64;
		state->adc_diff = 3000;
		ret = 20;

		*tune_state = CT_TUNER_STEP_1;
	} else if (*tune_state == CT_TUNER_STEP_1) {
		state->step /= 2;
		dib0070_write_reg(state, 0x14, state->lo4 | state->captrim);
		ret = 15;

		*tune_state = CT_TUNER_STEP_2;
	} else if (*tune_state == CT_TUNER_STEP_2) {

		adc = dib0070_read_reg(state, 0x19);

		dprintk("CAPTRIM=%hd; ADC = %hd (ADC) & %dmV\n", state->captrim, adc, (u32) adc*(u32)1800/(u32)1024);

		if (adc >= 400) {
			adc -= 400;
			step_sign = -1;
		} else {
			adc = 400 - adc;
			step_sign = 1;
		}

		if (adc < state->adc_diff) {
			dprintk("CAPTRIM=%hd is closer to target (%hd/%hd)\n", state->captrim, adc, state->adc_diff);
			state->adc_diff = adc;
			state->fcaptrim = state->captrim;
		}
		state->captrim += (step_sign * state->step);

		if (state->step >= 1)
			*tune_state = CT_TUNER_STEP_1;
		else
			*tune_state = CT_TUNER_STEP_3;

	} else if (*tune_state == CT_TUNER_STEP_3) {
		dib0070_write_reg(state, 0x14, state->lo4 | state->fcaptrim);
		dib0070_write_reg(state, 0x18, 0x07ff);
		*tune_state = CT_TUNER_STEP_4;
	}

	return ret;
}

static int dib0070_set_ctrl_lo5(struct dvb_frontend *fe, u8 vco_bias_trim, u8 hf_div_trim, u8 cp_current, u8 third_order_filt)
{
	struct dib0070_state *state = fe->tuner_priv;
	u16 lo5 = (third_order_filt << 14) | (0 << 13) | (1 << 12) | (3 << 9) | (cp_current << 6) | (hf_div_trim << 3) | (vco_bias_trim << 0);

	dprintk("CTRL_LO5: 0x%x\n", lo5);
	return dib0070_write_reg(state, 0x15, lo5);
}

void dib0070_ctrl_agc_filter(struct dvb_frontend *fe, u8 open)
{
	struct dib0070_state *state = fe->tuner_priv;

	if (open) {
		dib0070_write_reg(state, 0x1b, 0xff00);
		dib0070_write_reg(state, 0x1a, 0x0000);
	} else {
		dib0070_write_reg(state, 0x1b, 0x4112);
		if (state->cfg->vga_filter != 0) {
			dib0070_write_reg(state, 0x1a, state->cfg->vga_filter);
			dprintk("vga filter register is set to %x\n", state->cfg->vga_filter);
		} else
			dib0070_write_reg(state, 0x1a, 0x0009);
	}
}

EXPORT_SYMBOL(dib0070_ctrl_agc_filter);
struct dib0070_tuning {
	u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
	u8 switch_trim;
	u8 vco_band;
	u8 hfdiv;
	u8 vco_multi;
	u8 presc;
	u8 wbdmux;
	u16 tuner_enable;
};

struct dib0070_lna_match {
	u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
	u8 lna_band;
};

static const struct dib0070_tuning dib0070s_tuning_table[] = {
	{     570000, 2, 1, 3, 6, 6, 2, 0x4000 | 0x0800 }, /* UHF */
	{     700000, 2, 0, 2, 4, 2, 2, 0x4000 | 0x0800 },
	{     863999, 2, 1, 2, 4, 2, 2, 0x4000 | 0x0800 },
	{    1500000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND */
	{    1600000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 },
	{    2000000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 },
	{ 0xffffffff, 0, 0, 8, 1, 2, 1, 0x8000 | 0x1000 }, /* SBAND */
};

static const struct dib0070_tuning dib0070_tuning_table[] = {
	{     115000, 1, 0, 7, 24, 2, 1, 0x8000 | 0x1000 }, /* FM below 92MHz cannot be tuned */
	{     179500, 1, 0, 3, 16, 2, 1, 0x8000 | 0x1000 }, /* VHF */
	{     189999, 1, 1, 3, 16, 2, 1, 0x8000 | 0x1000 },
	{     250000, 1, 0, 6, 12, 2, 1, 0x8000 | 0x1000 },
	{     569999, 2, 1, 5,  6, 2, 2, 0x4000 | 0x0800 }, /* UHF */
	{     699999, 2, 0, 1,  4, 2, 2, 0x4000 | 0x0800 },
	{     863999, 2, 1, 1,  4, 2, 2, 0x4000 | 0x0800 },
	{ 0xffffffff, 0, 1, 0,  2, 2, 4, 0x2000 | 0x0400 }, /* LBAND or everything higher than UHF */
};

static const struct dib0070_lna_match dib0070_lna_flip_chip[] = {
	{     180000, 0 }, /* VHF */
	{     188000, 1 },
	{     196400, 2 },
	{     250000, 3 },
	{     550000, 0 }, /* UHF */
	{     590000, 1 },
	{     666000, 3 },
	{     864000, 5 },
	{    1500000, 0 }, /* LBAND or everything higher than UHF */
	{    1600000, 1 },
	{    2000000, 3 },
	{ 0xffffffff, 7 },
};

static const struct dib0070_lna_match dib0070_lna[] = {
	{     180000, 0 }, /* VHF */
	{     188000, 1 },
	{     196400, 2 },
	{     250000, 3 },
	{     550000, 2 }, /* UHF */
	{     650000, 3 },
	{     750000, 5 },
	{     850000, 6 },
	{     864000, 7 },
	{    1500000, 0 }, /* LBAND or everything higher than UHF */
	{    1600000, 1 },
	{    2000000, 3 },
	{ 0xffffffff, 7 },
};

#define LPF	100
static int dib0070_tune_digital(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;

	const struct dib0070_tuning *tune;
	const struct dib0070_lna_match *lna_match;

	enum frontend_tune_state *tune_state = &state->tune_state;
	int ret = 10; /* 1ms is the default delay most of the time */

	u8  band = (u8)BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency/1000);
	u32 freq = fe->dtv_property_cache.frequency/1000 + (band == BAND_VHF ? state->cfg->freq_offset_khz_vhf : state->cfg->freq_offset_khz_uhf);

#ifdef CONFIG_SYS_ISDBT
	if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1)
			if (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2)
			&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
			|| (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
				&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == (state->fe->dtv_property_cache.isdbt_sb_segment_count / 2)))
			|| (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
				&& (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))))
				freq += 850;
#endif
	if (state->current_rf != freq) {

		switch (state->revision) {
		case DIB0070S_P1A:
		tune = dib0070s_tuning_table;
		lna_match = dib0070_lna;
		break;
		default:
		tune = dib0070_tuning_table;
		if (state->cfg->flip_chip)
			lna_match = dib0070_lna_flip_chip;
		else
			lna_match = dib0070_lna;
		break;
		}
		while (freq > tune->max_freq) /* find the right one */
			tune++;
		while (freq > lna_match->max_freq) /* find the right one */
			lna_match++;

		state->current_tune_table_index = tune;
		state->lna_match = lna_match;
	}

	if (*tune_state == CT_TUNER_START) {
		dprintk("Tuning for Band: %hd (%d kHz)\n", band, freq);
		if (state->current_rf != freq) {
			u8 REFDIV;
			u32 FBDiv, Rest, FREF, VCOF_kHz;
			u8 Den;

			state->current_rf = freq;
			state->lo4 = (state->current_tune_table_index->vco_band << 11) | (state->current_tune_table_index->hfdiv << 7);


			dib0070_write_reg(state, 0x17, 0x30);


			VCOF_kHz = state->current_tune_table_index->vco_multi * freq * 2;

			switch (band) {
			case BAND_VHF:
				REFDIV = (u8) ((state->cfg->clock_khz + 9999) / 10000);
				break;
			case BAND_FM:
				REFDIV = (u8) ((state->cfg->clock_khz) / 1000);
				break;
			default:
				REFDIV = (u8) (state->cfg->clock_khz  / 10000);
				break;
			}
			FREF = state->cfg->clock_khz / REFDIV;



			switch (state->revision) {
			case DIB0070S_P1A:
				FBDiv = (VCOF_kHz / state->current_tune_table_index->presc / FREF);
				Rest  = (VCOF_kHz / state->current_tune_table_index->presc) - FBDiv * FREF;
				break;

			case DIB0070_P1G:
			case DIB0070_P1F:
			default:
				FBDiv = (freq / (FREF / 2));
				Rest  = 2 * freq - FBDiv * FREF;
				break;
			}

			if (Rest < LPF)
				Rest = 0;
			else if (Rest < 2 * LPF)
				Rest = 2 * LPF;
			else if (Rest > (FREF - LPF)) {
				Rest = 0;
				FBDiv += 1;
			} else if (Rest > (FREF - 2 * LPF))
				Rest = FREF - 2 * LPF;
			Rest = (Rest * 6528) / (FREF / 10);

			Den = 1;
			if (Rest > 0) {
				state->lo4 |= (1 << 14) | (1 << 12);
				Den = 255;
			}


			dib0070_write_reg(state, 0x11, (u16)FBDiv);
			dib0070_write_reg(state, 0x12, (Den << 8) | REFDIV);
			dib0070_write_reg(state, 0x13, (u16) Rest);

			if (state->revision == DIB0070S_P1A) {

				if (band == BAND_SBAND) {
					dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0);
					dib0070_write_reg(state, 0x1d, 0xFFFF);
				} else
					dib0070_set_ctrl_lo5(fe, 5, 4, 3, 1);
			}

			dib0070_write_reg(state, 0x20,
				0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001 | state->current_tune_table_index->tuner_enable);

			dprintk("REFDIV: %hd, FREF: %d\n", REFDIV, FREF);
			dprintk("FBDIV: %d, Rest: %d\n", FBDiv, Rest);
			dprintk("Num: %hd, Den: %hd, SD: %hd\n", (u16) Rest, Den, (state->lo4 >> 12) & 0x1);
			dprintk("HFDIV code: %hd\n", state->current_tune_table_index->hfdiv);
			dprintk("VCO = %hd\n", state->current_tune_table_index->vco_band);
			dprintk("VCOF: ((%hd*%d) << 1))\n", state->current_tune_table_index->vco_multi, freq);

			*tune_state = CT_TUNER_STEP_0;
		} else { /* we are already tuned to this frequency - the configuration is correct  */
			ret = 50; /* wakeup time */
			*tune_state = CT_TUNER_STEP_5;
		}
	} else if ((*tune_state > CT_TUNER_START) && (*tune_state < CT_TUNER_STEP_4)) {

		ret = dib0070_captrim(state, tune_state);

	} else if (*tune_state == CT_TUNER_STEP_4) {
		const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain;
		if (tmp != NULL) {
			while (freq/1000 > tmp->freq) /* find the right one */
				tmp++;
			dib0070_write_reg(state, 0x0f,
				(0 << 15) | (1 << 14) | (3 << 12)
				| (tmp->wbd_gain_val << 9) | (0 << 8) | (1 << 7)
				| (state->current_tune_table_index->wbdmux << 0));
			state->wbd_gain_current = tmp->wbd_gain_val;
		} else {
			dib0070_write_reg(state, 0x0f,
					  (0 << 15) | (1 << 14) | (3 << 12)
					  | (6 << 9) | (0 << 8) | (1 << 7)
					  | (state->current_tune_table_index->wbdmux << 0));
			state->wbd_gain_current = 6;
		}

		dib0070_write_reg(state, 0x06, 0x3fff);
		dib0070_write_reg(state, 0x07,
				  (state->current_tune_table_index->switch_trim << 11) | (7 << 8) | (state->lna_match->lna_band << 3) | (3 << 0));
		dib0070_write_reg(state, 0x08, (state->lna_match->lna_band << 10) | (3 << 7) | (127));
		dib0070_write_reg(state, 0x0d, 0x0d80);


		dib0070_write_reg(state, 0x18,   0x07ff);
		dib0070_write_reg(state, 0x17, 0x0033);


		*tune_state = CT_TUNER_STEP_5;
	} else if (*tune_state == CT_TUNER_STEP_5) {
		dib0070_set_bandwidth(fe);
		*tune_state = CT_TUNER_STOP;
	} else {
		ret = FE_CALLBACK_TIME_NEVER; /* tuner finished, time to call again infinite */
	}
	return ret;
}


static int dib0070_tune(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	uint32_t ret;

	state->tune_state = CT_TUNER_START;

	do {
		ret = dib0070_tune_digital(fe);
		if (ret != FE_CALLBACK_TIME_NEVER)
			msleep(ret/10);
		else
		break;
	} while (state->tune_state != CT_TUNER_STOP);

	return 0;
}

static int dib0070_wakeup(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	if (state->cfg->sleep)
		state->cfg->sleep(fe, 0);
	return 0;
}

static int dib0070_sleep(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	if (state->cfg->sleep)
		state->cfg->sleep(fe, 1);
	return 0;
}

u8 dib0070_get_rf_output(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	return (dib0070_read_reg(state, 0x07) >> 11) & 0x3;
}
EXPORT_SYMBOL(dib0070_get_rf_output);

int dib0070_set_rf_output(struct dvb_frontend *fe, u8 no)
{
	struct dib0070_state *state = fe->tuner_priv;
	u16 rxrf2 = dib0070_read_reg(state, 0x07) & 0xfe7ff;
	if (no > 3)
		no = 3;
	if (no < 1)
		no = 1;
	return dib0070_write_reg(state, 0x07, rxrf2 | (no << 11));
}
EXPORT_SYMBOL(dib0070_set_rf_output);

static const u16 dib0070_p1f_defaults[] =

{
	7, 0x02,
		0x0008,
		0x0000,
		0x0000,
		0x0000,
		0x0000,
		0x0002,
		0x0100,

	3, 0x0d,
		0x0d80,
		0x0001,
		0x0000,

	4, 0x11,
		0x0000,
		0x0103,
		0x0000,
		0x0000,

	3, 0x16,
		0x0004 | 0x0040,
		0x0030,
		0x07ff,

	6, 0x1b,
		0x4112,
		0xff00,
		0xc07f,
		0x0000,
		0x0180,
		0x4000 | 0x0800 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001,

	0,
};

static u16 dib0070_read_wbd_offset(struct dib0070_state *state, u8 gain)
{
	u16 tuner_en = dib0070_read_reg(state, 0x20);
	u16 offset;

	dib0070_write_reg(state, 0x18, 0x07ff);
	dib0070_write_reg(state, 0x20, 0x0800 | 0x4000 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001);
	dib0070_write_reg(state, 0x0f, (1 << 14) | (2 << 12) | (gain << 9) | (1 << 8) | (1 << 7) | (0 << 0));
	msleep(9);
	offset = dib0070_read_reg(state, 0x19);
	dib0070_write_reg(state, 0x20, tuner_en);
	return offset;
}

static void dib0070_wbd_offset_calibration(struct dib0070_state *state)
{
	u8 gain;
	for (gain = 6; gain < 8; gain++) {
		state->wbd_offset_3_3[gain - 6] = ((dib0070_read_wbd_offset(state, gain) * 8 * 18 / 33 + 1) / 2);
		dprintk("Gain: %d, WBDOffset (3.3V) = %hd\n", gain, state->wbd_offset_3_3[gain-6]);
	}
}

u16 dib0070_wbd_offset(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain;
	u32 freq = fe->dtv_property_cache.frequency/1000;

	if (tmp != NULL) {
		while (freq/1000 > tmp->freq) /* find the right one */
			tmp++;
		state->wbd_gain_current = tmp->wbd_gain_val;
	} else
		state->wbd_gain_current = 6;

	return state->wbd_offset_3_3[state->wbd_gain_current - 6];
}
EXPORT_SYMBOL(dib0070_wbd_offset);

#define pgm_read_word(w) (*w)
static int dib0070_reset(struct dvb_frontend *fe)
{
	struct dib0070_state *state = fe->tuner_priv;
	u16 l, r, *n;

	HARD_RESET(state);


#ifndef FORCE_SBAND_TUNER
	if ((dib0070_read_reg(state, 0x22) >> 9) & 0x1)
		state->revision = (dib0070_read_reg(state, 0x1f) >> 8) & 0xff;
	else
#else
#warning forcing SBAND
#endif
	state->revision = DIB0070S_P1A;

	/* P1F or not */
	dprintk("Revision: %x\n", state->revision);

	if (state->revision == DIB0070_P1D) {
		dprintk("Error: this driver is not to be used meant for P1D or earlier\n");
		return -EINVAL;
	}

	n = (u16 *) dib0070_p1f_defaults;
	l = pgm_read_word(n++);
	while (l) {
		r = pgm_read_word(n++);
		do {
			dib0070_write_reg(state, (u8)r, pgm_read_word(n++));
			r++;
		} while (--l);
		l = pgm_read_word(n++);
	}

	if (state->cfg->force_crystal_mode != 0)
		r = state->cfg->force_crystal_mode;
	else if (state->cfg->clock_khz >= 24000)
		r = 1;
	else
		r = 2;


	r |= state->cfg->osc_buffer_state << 3;

	dib0070_write_reg(state, 0x10, r);
	dib0070_write_reg(state, 0x1f, (1 << 8) | ((state->cfg->clock_pad_drive & 0xf) << 5));

	if (state->cfg->invert_iq) {
		r = dib0070_read_reg(state, 0x02) & 0xffdf;
		dib0070_write_reg(state, 0x02, r | (1 << 5));
	}

	if (state->revision == DIB0070S_P1A)
		dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0);
	else
		dib0070_set_ctrl_lo5(fe, 5, 4, state->cfg->charge_pump,
				     state->cfg->enable_third_order_filter);

	dib0070_write_reg(state, 0x01, (54 << 9) | 0xc8);

	dib0070_wbd_offset_calibration(state);

	return 0;
}

static int dib0070_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct dib0070_state *state = fe->tuner_priv;

	*frequency = 1000 * state->current_rf;
	return 0;
}

static void dib0070_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
}

static const struct dvb_tuner_ops dib0070_ops = {
	.info = {
		.name           = "DiBcom DiB0070",
		.frequency_min  =  45000000,
		.frequency_max  = 860000000,
		.frequency_step =      1000,
	},
	.release       = dib0070_release,

	.init          = dib0070_wakeup,
	.sleep         = dib0070_sleep,
	.set_params    = dib0070_tune,

	.get_frequency = dib0070_get_frequency,
//      .get_bandwidth = dib0070_get_bandwidth
};

struct dvb_frontend *dib0070_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct dib0070_config *cfg)
{
	struct dib0070_state *state = kzalloc(sizeof(struct dib0070_state), GFP_KERNEL);
	if (state == NULL)
		return NULL;

	state->cfg = cfg;
	state->i2c = i2c;
	state->fe  = fe;
	mutex_init(&state->i2c_buffer_lock);
	fe->tuner_priv = state;

	if (dib0070_reset(fe) != 0)
		goto free_mem;

	pr_info("DiB0070: successfully identified\n");
	memcpy(&fe->ops.tuner_ops, &dib0070_ops, sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = state;
	return fe;

free_mem:
	kfree(state);
	fe->tuner_priv = NULL;
	return NULL;
}
EXPORT_SYMBOL(dib0070_attach);

MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
MODULE_DESCRIPTION("Driver for the DiBcom 0070 base-band RF Tuner");
MODULE_LICENSE("GPL");