Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * Windfarm PowerMac thermal control.
 * Control loops for RackMack3,1 (Xserve G5)
 *
 * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
 *
 * Use and redistribute under the terms of the GNU GPL v2.
 */
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/reboot.h>
#include <asm/prom.h>
#include <asm/smu.h>

#include "windfarm.h"
#include "windfarm_pid.h"
#include "windfarm_mpu.h"

#define VERSION "1.0"

#undef DEBUG
#undef LOTSA_DEBUG

#ifdef DEBUG
#define DBG(args...)	printk(args)
#else
#define DBG(args...)	do { } while(0)
#endif

#ifdef LOTSA_DEBUG
#define DBG_LOTS(args...)	printk(args)
#else
#define DBG_LOTS(args...)	do { } while(0)
#endif

/* define this to force CPU overtemp to 60 degree, useful for testing
 * the overtemp code
 */
#undef HACKED_OVERTEMP

/* We currently only handle 2 chips */
#define NR_CHIPS	2
#define NR_CPU_FANS	3 * NR_CHIPS

/* Controls and sensors */
static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
static struct wf_sensor *backside_temp;
static struct wf_sensor *slots_temp;
static struct wf_sensor *dimms_temp;

static struct wf_control *cpu_fans[NR_CHIPS][3];
static struct wf_control *backside_fan;
static struct wf_control *slots_fan;
static struct wf_control *cpufreq_clamp;

/* We keep a temperature history for average calculation of 180s */
#define CPU_TEMP_HIST_SIZE	180

/* PID loop state */
static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
static int cpu_thist_pt;
static s64 cpu_thist_total;
static s32 cpu_all_tmax = 100 << 16;
static struct wf_pid_state backside_pid;
static int backside_tick;
static struct wf_pid_state slots_pid;
static int slots_tick;
static int slots_speed;
static struct wf_pid_state dimms_pid;
static int dimms_output_clamp;

static int nr_chips;
static bool have_all_controls;
static bool have_all_sensors;
static bool started;

static int failure_state;
#define FAILURE_SENSOR		1
#define FAILURE_FAN		2
#define FAILURE_PERM		4
#define FAILURE_LOW_OVERTEMP	8
#define FAILURE_HIGH_OVERTEMP	16

/* Overtemp values */
#define LOW_OVER_AVERAGE	0
#define LOW_OVER_IMMEDIATE	(10 << 16)
#define LOW_OVER_CLEAR		((-10) << 16)
#define HIGH_OVER_IMMEDIATE	(14 << 16)
#define HIGH_OVER_AVERAGE	(10 << 16)
#define HIGH_OVER_IMMEDIATE	(14 << 16)


static void cpu_max_all_fans(void)
{
	int i;

	/* We max all CPU fans in case of a sensor error. We also do the
	 * cpufreq clamping now, even if it's supposedly done later by the
	 * generic code anyway, we do it earlier here to react faster
	 */
	if (cpufreq_clamp)
		wf_control_set_max(cpufreq_clamp);
	for (i = 0; i < nr_chips; i++) {
		if (cpu_fans[i][0])
			wf_control_set_max(cpu_fans[i][0]);
		if (cpu_fans[i][1])
			wf_control_set_max(cpu_fans[i][1]);
		if (cpu_fans[i][2])
			wf_control_set_max(cpu_fans[i][2]);
	}
}

static int cpu_check_overtemp(s32 temp)
{
	int new_state = 0;
	s32 t_avg, t_old;
	static bool first = true;

	/* First check for immediate overtemps */
	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
		new_state |= FAILURE_LOW_OVERTEMP;
		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
			       " temperature !\n");
	}
	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
		new_state |= FAILURE_HIGH_OVERTEMP;
		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
			printk(KERN_ERR "windfarm: Critical overtemp due to"
			       " immediate CPU temperature !\n");
	}

	/*
	 * The first time around, initialize the array with the first
	 * temperature reading
	 */
	if (first) {
		int i;

		cpu_thist_total = 0;
		for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
			cpu_thist[i] = temp;
			cpu_thist_total += temp;
		}
		first = false;
	}

	/*
	 * We calculate a history of max temperatures and use that for the
	 * overtemp management
	 */
	t_old = cpu_thist[cpu_thist_pt];
	cpu_thist[cpu_thist_pt] = temp;
	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
	cpu_thist_total -= t_old;
	cpu_thist_total += temp;
	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;

	DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));

	/* Now check for average overtemps */
	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
		new_state |= FAILURE_LOW_OVERTEMP;
		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
			       " temperature !\n");
	}
	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
		new_state |= FAILURE_HIGH_OVERTEMP;
		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
			printk(KERN_ERR "windfarm: Critical overtemp due to"
			       " average CPU temperature !\n");
	}

	/* Now handle overtemp conditions. We don't currently use the windfarm
	 * overtemp handling core as it's not fully suited to the needs of those
	 * new machine. This will be fixed later.
	 */
	if (new_state) {
		/* High overtemp -> immediate shutdown */
		if (new_state & FAILURE_HIGH_OVERTEMP)
			machine_power_off();
		if ((failure_state & new_state) != new_state)
			cpu_max_all_fans();
		failure_state |= new_state;
	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
		failure_state &= ~FAILURE_LOW_OVERTEMP;
	}

	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
}

static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
{
	s32 dtemp, volts, amps;
	int rc;

	/* Get diode temperature */
	rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
	if (rc) {
		DBG("  CPU%d: temp reading error !\n", cpu);
		return -EIO;
	}
	DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
	*temp = dtemp;

	/* Get voltage */
	rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
	if (rc) {
		DBG("  CPU%d, volts reading error !\n", cpu);
		return -EIO;
	}
	DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts)));

	/* Get current */
	rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
	if (rc) {
		DBG("  CPU%d, current reading error !\n", cpu);
		return -EIO;
	}
	DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps)));

	/* Calculate power */

	/* Scale voltage and current raw sensor values according to fixed scales
	 * obtained in Darwin and calculate power from I and V
	 */
	*power = (((u64)volts) * ((u64)amps)) >> 16;

	DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power)));

	return 0;

}

static void cpu_fans_tick(void)
{
	int err, cpu, i;
	s32 speed, temp, power, t_max = 0;

	DBG_LOTS("* cpu fans_tick_split()\n");

	for (cpu = 0; cpu < nr_chips; ++cpu) {
		struct wf_cpu_pid_state *sp = &cpu_pid[cpu];

		/* Read current speed */
		wf_control_get(cpu_fans[cpu][0], &sp->target);

		err = read_one_cpu_vals(cpu, &temp, &power);
		if (err) {
			failure_state |= FAILURE_SENSOR;
			cpu_max_all_fans();
			return;
		}

		/* Keep track of highest temp */
		t_max = max(t_max, temp);

		/* Handle possible overtemps */
		if (cpu_check_overtemp(t_max))
			return;

		/* Run PID */
		wf_cpu_pid_run(sp, power, temp);

		DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);

		/* Apply DIMMs clamp */
		speed = max(sp->target, dimms_output_clamp);

		/* Apply result to all cpu fans */
		for (i = 0; i < 3; i++) {
			err = wf_control_set(cpu_fans[cpu][i], speed);
			if (err) {
				pr_warning("wf_rm31: Fan %s reports error %d\n",
					   cpu_fans[cpu][i]->name, err);
				failure_state |= FAILURE_FAN;
			}
		}
	}
}

/* Implementation... */
static int cpu_setup_pid(int cpu)
{
	struct wf_cpu_pid_param pid;
	const struct mpu_data *mpu = cpu_mpu_data[cpu];
	s32 tmax, ttarget, ptarget;
	int fmin, fmax, hsize;

	/* Get PID params from the appropriate MPU EEPROM */
	tmax = mpu->tmax << 16;
	ttarget = mpu->ttarget << 16;
	ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;

	DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
	    cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));

	/* We keep a global tmax for overtemp calculations */
	if (tmax < cpu_all_tmax)
		cpu_all_tmax = tmax;

	/* Set PID min/max by using the rear fan min/max */
	fmin = wf_control_get_min(cpu_fans[cpu][0]);
	fmax = wf_control_get_max(cpu_fans[cpu][0]);
	DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);

	/* History size */
	hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
	DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);

	/* Initialize PID loop */
	pid.interval	= 1;	/* seconds */
	pid.history_len = hsize;
	pid.gd		= mpu->pid_gd;
	pid.gp		= mpu->pid_gp;
	pid.gr		= mpu->pid_gr;
	pid.tmax	= tmax;
	pid.ttarget	= ttarget;
	pid.pmaxadj	= ptarget;
	pid.min		= fmin;
	pid.max		= fmax;

	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
	cpu_pid[cpu].target = 4000;
	
	return 0;
}

/* Backside/U3 fan */
static struct wf_pid_param backside_param = {
	.interval	= 1,
	.history_len	= 2,
	.gd		= 0x00500000,
	.gp		= 0x0004cccc,
	.gr		= 0,
	.itarget	= 70 << 16,
	.additive	= 0,
	.min		= 20,
	.max		= 100,
};

/* DIMMs temperature (clamp the backside fan) */
static struct wf_pid_param dimms_param = {
	.interval	= 1,
	.history_len	= 20,
	.gd		= 0,
	.gp		= 0,
	.gr		= 0x06553600,
	.itarget	= 50 << 16,
	.additive	= 0,
	.min		= 4000,
	.max		= 14000,
};

static void backside_fan_tick(void)
{
	s32 temp, dtemp;
	int speed, dspeed, fan_min;
	int err;

	if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
		return;
	if (--backside_tick > 0)
		return;
	backside_tick = backside_pid.param.interval;

	DBG_LOTS("* backside fans tick\n");

	/* Update fan speed from actual fans */
	err = wf_control_get(backside_fan, &speed);
	if (!err)
		backside_pid.target = speed;

	err = wf_sensor_get(backside_temp, &temp);
	if (err) {
		printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
		       err);
		failure_state |= FAILURE_SENSOR;
		wf_control_set_max(backside_fan);
		return;
	}
	speed = wf_pid_run(&backside_pid, temp);

	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
		 FIX32TOPRINT(temp), speed);

	err = wf_sensor_get(dimms_temp, &dtemp);
	if (err) {
		printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
		       err);
		failure_state |= FAILURE_SENSOR;
		wf_control_set_max(backside_fan);
		return;
	}
	dspeed = wf_pid_run(&dimms_pid, dtemp);
	dimms_output_clamp = dspeed;

	fan_min = (dspeed * 100) / 14000;
	fan_min = max(fan_min, backside_param.min);
	speed = max(speed, fan_min);

	err = wf_control_set(backside_fan, speed);
	if (err) {
		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
		failure_state |= FAILURE_FAN;
	}
}

static void backside_setup_pid(void)
{
	/* first time initialize things */
	s32 fmin = wf_control_get_min(backside_fan);
	s32 fmax = wf_control_get_max(backside_fan);
	struct wf_pid_param param;

	param = backside_param;
	param.min = max(param.min, fmin);
	param.max = min(param.max, fmax);
	wf_pid_init(&backside_pid, &param);

	param = dimms_param;
	wf_pid_init(&dimms_pid, &param);

	backside_tick = 1;

	pr_info("wf_rm31: Backside control loop started.\n");
}

/* Slots fan */
static const struct wf_pid_param slots_param = {
	.interval	= 1,
	.history_len	= 20,
	.gd		= 0,
	.gp		= 0,
	.gr		= 0x00100000,
	.itarget	= 3200000,
	.additive	= 0,
	.min		= 20,
	.max		= 100,
};

static void slots_fan_tick(void)
{
	s32 temp;
	int speed;
	int err;

	if (!slots_fan || !slots_temp || !slots_tick)
		return;
	if (--slots_tick > 0)
		return;
	slots_tick = slots_pid.param.interval;

	DBG_LOTS("* slots fans tick\n");

	err = wf_sensor_get(slots_temp, &temp);
	if (err) {
		pr_warning("wf_rm31: slots temp sensor error %d\n", err);
		failure_state |= FAILURE_SENSOR;
		wf_control_set_max(slots_fan);
		return;
	}
	speed = wf_pid_run(&slots_pid, temp);

	DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
		 FIX32TOPRINT(temp), speed);

	slots_speed = speed;
	err = wf_control_set(slots_fan, speed);
	if (err) {
		printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
		failure_state |= FAILURE_FAN;
	}
}

static void slots_setup_pid(void)
{
	/* first time initialize things */
	s32 fmin = wf_control_get_min(slots_fan);
	s32 fmax = wf_control_get_max(slots_fan);
	struct wf_pid_param param = slots_param;

	param.min = max(param.min, fmin);
	param.max = min(param.max, fmax);
	wf_pid_init(&slots_pid, &param);
	slots_tick = 1;

	pr_info("wf_rm31: Slots control loop started.\n");
}

static void set_fail_state(void)
{
	cpu_max_all_fans();

	if (backside_fan)
		wf_control_set_max(backside_fan);
	if (slots_fan)
		wf_control_set_max(slots_fan);
}

static void rm31_tick(void)
{
	int i, last_failure;

	if (!started) {
		started = 1;
		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
		for (i = 0; i < nr_chips; ++i) {
			if (cpu_setup_pid(i) < 0) {
				failure_state = FAILURE_PERM;
				set_fail_state();
				break;
			}
		}
		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));

		backside_setup_pid();
		slots_setup_pid();

#ifdef HACKED_OVERTEMP
		cpu_all_tmax = 60 << 16;
#endif
	}

	/* Permanent failure, bail out */
	if (failure_state & FAILURE_PERM)
		return;

	/*
	 * Clear all failure bits except low overtemp which will be eventually
	 * cleared by the control loop itself
	 */
	last_failure = failure_state;
	failure_state &= FAILURE_LOW_OVERTEMP;
	backside_fan_tick();
	slots_fan_tick();

	/* We do CPUs last because they can be clamped high by
	 * DIMM temperature
	 */
	cpu_fans_tick();

	DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n",
		 last_failure, failure_state);

	/* Check for failures. Any failure causes cpufreq clamping */
	if (failure_state && last_failure == 0 && cpufreq_clamp)
		wf_control_set_max(cpufreq_clamp);
	if (failure_state == 0 && last_failure && cpufreq_clamp)
		wf_control_set_min(cpufreq_clamp);

	/* That's it for now, we might want to deal with other failures
	 * differently in the future though
	 */
}

static void rm31_new_control(struct wf_control *ct)
{
	bool all_controls;

	if (!strcmp(ct->name, "cpu-fan-a-0"))
		cpu_fans[0][0] = ct;
	else if (!strcmp(ct->name, "cpu-fan-b-0"))
		cpu_fans[0][1] = ct;
	else if (!strcmp(ct->name, "cpu-fan-c-0"))
		cpu_fans[0][2] = ct;
	else if (!strcmp(ct->name, "cpu-fan-a-1"))
		cpu_fans[1][0] = ct;
	else if (!strcmp(ct->name, "cpu-fan-b-1"))
		cpu_fans[1][1] = ct;
	else if (!strcmp(ct->name, "cpu-fan-c-1"))
		cpu_fans[1][2] = ct;
	else if (!strcmp(ct->name, "backside-fan"))
		backside_fan = ct;
	else if (!strcmp(ct->name, "slots-fan"))
		slots_fan = ct;
	else if (!strcmp(ct->name, "cpufreq-clamp"))
		cpufreq_clamp = ct;

	all_controls =
		cpu_fans[0][0] &&
		cpu_fans[0][1] &&
		cpu_fans[0][2] &&
		backside_fan &&
		slots_fan;
	if (nr_chips > 1)
		all_controls &=
			cpu_fans[1][0] &&
			cpu_fans[1][1] &&
			cpu_fans[1][2];
	have_all_controls = all_controls;
}


static void rm31_new_sensor(struct wf_sensor *sr)
{
	bool all_sensors;

	if (!strcmp(sr->name, "cpu-diode-temp-0"))
		sens_cpu_temp[0] = sr;
	else if (!strcmp(sr->name, "cpu-diode-temp-1"))
		sens_cpu_temp[1] = sr;
	else if (!strcmp(sr->name, "cpu-voltage-0"))
		sens_cpu_volts[0] = sr;
	else if (!strcmp(sr->name, "cpu-voltage-1"))
		sens_cpu_volts[1] = sr;
	else if (!strcmp(sr->name, "cpu-current-0"))
		sens_cpu_amps[0] = sr;
	else if (!strcmp(sr->name, "cpu-current-1"))
		sens_cpu_amps[1] = sr;
	else if (!strcmp(sr->name, "backside-temp"))
		backside_temp = sr;
	else if (!strcmp(sr->name, "slots-temp"))
		slots_temp = sr;
	else if (!strcmp(sr->name, "dimms-temp"))
		dimms_temp = sr;

	all_sensors =
		sens_cpu_temp[0] &&
		sens_cpu_volts[0] &&
		sens_cpu_amps[0] &&
		backside_temp &&
		slots_temp &&
		dimms_temp;
	if (nr_chips > 1)
		all_sensors &=
			sens_cpu_temp[1] &&
			sens_cpu_volts[1] &&
			sens_cpu_amps[1];

	have_all_sensors = all_sensors;
}

static int rm31_wf_notify(struct notifier_block *self,
			  unsigned long event, void *data)
{
	switch (event) {
	case WF_EVENT_NEW_SENSOR:
		rm31_new_sensor(data);
		break;
	case WF_EVENT_NEW_CONTROL:
		rm31_new_control(data);
		break;
	case WF_EVENT_TICK:
		if (have_all_controls && have_all_sensors)
			rm31_tick();
	}
	return 0;
}

static struct notifier_block rm31_events = {
	.notifier_call = rm31_wf_notify,
};

static int wf_rm31_probe(struct platform_device *dev)
{
	wf_register_client(&rm31_events);
	return 0;
}

static int wf_rm31_remove(struct platform_device *dev)
{
	wf_unregister_client(&rm31_events);

	/* should release all sensors and controls */
	return 0;
}

static struct platform_driver wf_rm31_driver = {
	.probe	= wf_rm31_probe,
	.remove	= wf_rm31_remove,
	.driver	= {
		.name = "windfarm",
	},
};

static int __init wf_rm31_init(void)
{
	struct device_node *cpu;
	int i;

	if (!of_machine_is_compatible("RackMac3,1"))
		return -ENODEV;

	/* Count the number of CPU cores */
	nr_chips = 0;
	for_each_node_by_type(cpu, "cpu")
		++nr_chips;
	if (nr_chips > NR_CHIPS)
		nr_chips = NR_CHIPS;

	pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
		nr_chips);

	/* Get MPU data for each CPU */
	for (i = 0; i < nr_chips; i++) {
		cpu_mpu_data[i] = wf_get_mpu(i);
		if (!cpu_mpu_data[i]) {
			pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
			return -ENXIO;
		}
	}

#ifdef MODULE
	request_module("windfarm_fcu_controls");
	request_module("windfarm_lm75_sensor");
	request_module("windfarm_lm87_sensor");
	request_module("windfarm_ad7417_sensor");
	request_module("windfarm_max6690_sensor");
	request_module("windfarm_cpufreq_clamp");
#endif /* MODULE */

	platform_driver_register(&wf_rm31_driver);
	return 0;
}

static void __exit wf_rm31_exit(void)
{
	platform_driver_unregister(&wf_rm31_driver);
}

module_init(wf_rm31_init);
module_exit(wf_rm31_exit);

MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
MODULE_DESCRIPTION("Thermal control for Xserve G5");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:windfarm");