Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*
 * emc1403.c - SMSC Thermal Driver
 *
 * Copyright (C) 2008 Intel Corp
 *
 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/sysfs.h>
#include <linux/mutex.h>
#include <linux/regmap.h>

#define THERMAL_PID_REG		0xfd
#define THERMAL_SMSC_ID_REG	0xfe
#define THERMAL_REVISION_REG	0xff

enum emc1403_chip { emc1402, emc1403, emc1404 };

struct thermal_data {
	struct regmap *regmap;
	struct mutex mutex;
	const struct attribute_group *groups[4];
};

static ssize_t show_temp(struct device *dev,
			struct device_attribute *attr, char *buf)
{
	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	unsigned int val;
	int retval;

	retval = regmap_read(data->regmap, sda->index, &val);
	if (retval < 0)
		return retval;
	return sprintf(buf, "%d000\n", val);
}

static ssize_t show_bit(struct device *dev,
			struct device_attribute *attr, char *buf)
{
	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	unsigned int val;
	int retval;

	retval = regmap_read(data->regmap, sda->nr, &val);
	if (retval < 0)
		return retval;
	return sprintf(buf, "%d\n", !!(val & sda->index));
}

static ssize_t store_temp(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	unsigned long val;
	int retval;

	if (kstrtoul(buf, 10, &val))
		return -EINVAL;
	retval = regmap_write(data->regmap, sda->index,
			      DIV_ROUND_CLOSEST(val, 1000));
	if (retval < 0)
		return retval;
	return count;
}

static ssize_t store_bit(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	unsigned long val;
	int retval;

	if (kstrtoul(buf, 10, &val))
		return -EINVAL;

	retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
				    val ? sda->index : 0);
	if (retval < 0)
		return retval;
	return count;
}

static ssize_t show_hyst_common(struct device *dev,
				struct device_attribute *attr, char *buf,
				bool is_min)
{
	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	struct regmap *regmap = data->regmap;
	unsigned int limit;
	unsigned int hyst;
	int retval;

	retval = regmap_read(regmap, sda->index, &limit);
	if (retval < 0)
		return retval;

	retval = regmap_read(regmap, 0x21, &hyst);
	if (retval < 0)
		return retval;

	return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
}

static ssize_t show_hyst(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	return show_hyst_common(dev, attr, buf, false);
}

static ssize_t show_min_hyst(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	return show_hyst_common(dev, attr, buf, true);
}

static ssize_t store_hyst(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
	struct thermal_data *data = dev_get_drvdata(dev);
	struct regmap *regmap = data->regmap;
	unsigned int limit;
	int retval;
	int hyst;
	unsigned long val;

	if (kstrtoul(buf, 10, &val))
		return -EINVAL;

	mutex_lock(&data->mutex);
	retval = regmap_read(regmap, sda->index, &limit);
	if (retval < 0)
		goto fail;

	hyst = limit * 1000 - val;
	hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
	retval = regmap_write(regmap, 0x21, hyst);
	if (retval == 0)
		retval = count;
fail:
	mutex_unlock(&data->mutex);
	return retval;
}

/*
 *	Sensors. We pass the actual i2c register to the methods.
 */

static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x06);
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x05);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x20);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0x00);
static SENSOR_DEVICE_ATTR_2(temp1_min_alarm, S_IRUGO,
	show_bit, NULL, 0x36, 0x01);
static SENSOR_DEVICE_ATTR_2(temp1_max_alarm, S_IRUGO,
	show_bit, NULL, 0x35, 0x01);
static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO,
	show_bit, NULL, 0x37, 0x01);
static SENSOR_DEVICE_ATTR(temp1_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x06);
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IRUGO, show_hyst, NULL, 0x05);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO | S_IWUSR,
	show_hyst, store_hyst, 0x20);

static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x08);
static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x07);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x19);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0x01);
static SENSOR_DEVICE_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x02);
static SENSOR_DEVICE_ATTR_2(temp2_min_alarm, S_IRUGO,
	show_bit, NULL, 0x36, 0x02);
static SENSOR_DEVICE_ATTR_2(temp2_max_alarm, S_IRUGO,
	show_bit, NULL, 0x35, 0x02);
static SENSOR_DEVICE_ATTR_2(temp2_crit_alarm, S_IRUGO,
	show_bit, NULL, 0x37, 0x02);
static SENSOR_DEVICE_ATTR(temp2_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x08);
static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IRUGO, show_hyst, NULL, 0x07);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_hyst, NULL, 0x19);

static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x16);
static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x15);
static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x1A);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 0x23);
static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x04);
static SENSOR_DEVICE_ATTR_2(temp3_min_alarm, S_IRUGO,
	show_bit, NULL, 0x36, 0x04);
static SENSOR_DEVICE_ATTR_2(temp3_max_alarm, S_IRUGO,
	show_bit, NULL, 0x35, 0x04);
static SENSOR_DEVICE_ATTR_2(temp3_crit_alarm, S_IRUGO,
	show_bit, NULL, 0x37, 0x04);
static SENSOR_DEVICE_ATTR(temp3_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x16);
static SENSOR_DEVICE_ATTR(temp3_max_hyst, S_IRUGO, show_hyst, NULL, 0x15);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_hyst, NULL, 0x1A);

static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x2D);
static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x2C);
static SENSOR_DEVICE_ATTR(temp4_crit, S_IRUGO | S_IWUSR,
	show_temp, store_temp, 0x30);
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 0x2A);
static SENSOR_DEVICE_ATTR_2(temp4_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x08);
static SENSOR_DEVICE_ATTR_2(temp4_min_alarm, S_IRUGO,
	show_bit, NULL, 0x36, 0x08);
static SENSOR_DEVICE_ATTR_2(temp4_max_alarm, S_IRUGO,
	show_bit, NULL, 0x35, 0x08);
static SENSOR_DEVICE_ATTR_2(temp4_crit_alarm, S_IRUGO,
	show_bit, NULL, 0x37, 0x08);
static SENSOR_DEVICE_ATTR(temp4_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x2D);
static SENSOR_DEVICE_ATTR(temp4_max_hyst, S_IRUGO, show_hyst, NULL, 0x2C);
static SENSOR_DEVICE_ATTR(temp4_crit_hyst, S_IRUGO, show_hyst, NULL, 0x30);

static SENSOR_DEVICE_ATTR_2(power_state, S_IRUGO | S_IWUSR,
	show_bit, store_bit, 0x03, 0x40);

static struct attribute *emc1402_attrs[] = {
	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,

	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_crit.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,

	&sensor_dev_attr_power_state.dev_attr.attr,
	NULL
};

static const struct attribute_group emc1402_group = {
		.attrs = emc1402_attrs,
};

static struct attribute *emc1403_attrs[] = {
	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_temp2_fault.dev_attr.attr,
	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,

	&sensor_dev_attr_temp3_min.dev_attr.attr,
	&sensor_dev_attr_temp3_max.dev_attr.attr,
	&sensor_dev_attr_temp3_crit.dev_attr.attr,
	&sensor_dev_attr_temp3_input.dev_attr.attr,
	&sensor_dev_attr_temp3_fault.dev_attr.attr,
	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
	NULL
};

static const struct attribute_group emc1403_group = {
	.attrs = emc1403_attrs,
};

static struct attribute *emc1404_attrs[] = {
	&sensor_dev_attr_temp4_min.dev_attr.attr,
	&sensor_dev_attr_temp4_max.dev_attr.attr,
	&sensor_dev_attr_temp4_crit.dev_attr.attr,
	&sensor_dev_attr_temp4_input.dev_attr.attr,
	&sensor_dev_attr_temp4_fault.dev_attr.attr,
	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
	NULL
};

static const struct attribute_group emc1404_group = {
	.attrs = emc1404_attrs,
};

/*
 * EMC14x2 uses a different register and different bits to report alarm and
 * fault status. For simplicity, provide a separate attribute group for this
 * chip series.
 * Since we can not re-use the same attribute names, create a separate attribute
 * array.
 */
static struct sensor_device_attribute_2 emc1402_alarms[] = {
	SENSOR_ATTR_2(temp1_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x20),
	SENSOR_ATTR_2(temp1_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x40),
	SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x01),

	SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x02, 0x04),
	SENSOR_ATTR_2(temp2_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x08),
	SENSOR_ATTR_2(temp2_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x10),
	SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x02),
};

static struct attribute *emc1402_alarm_attrs[] = {
	&emc1402_alarms[0].dev_attr.attr,
	&emc1402_alarms[1].dev_attr.attr,
	&emc1402_alarms[2].dev_attr.attr,
	&emc1402_alarms[3].dev_attr.attr,
	&emc1402_alarms[4].dev_attr.attr,
	&emc1402_alarms[5].dev_attr.attr,
	&emc1402_alarms[6].dev_attr.attr,
	NULL,
};

static const struct attribute_group emc1402_alarm_group = {
	.attrs = emc1402_alarm_attrs,
};

static int emc1403_detect(struct i2c_client *client,
			struct i2c_board_info *info)
{
	int id;
	/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */

	id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
	if (id != 0x5d)
		return -ENODEV;

	id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
	switch (id) {
	case 0x20:
		strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
		break;
	case 0x21:
		strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
		break;
	case 0x22:
		strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
		break;
	case 0x23:
		strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
		break;
	case 0x25:
		strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
		break;
	case 0x27:
		strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
		break;
	default:
		return -ENODEV;
	}

	id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
	if (id < 0x01 || id > 0x04)
		return -ENODEV;

	return 0;
}

static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case 0x00:	/* internal diode high byte */
	case 0x01:	/* external diode 1 high byte */
	case 0x02:	/* status */
	case 0x10:	/* external diode 1 low byte */
	case 0x1b:	/* external diode fault */
	case 0x23:	/* external diode 2 high byte */
	case 0x24:	/* external diode 2 low byte */
	case 0x29:	/* internal diode low byte */
	case 0x2a:	/* externl diode 3 high byte */
	case 0x2b:	/* external diode 3 low byte */
	case 0x35:	/* high limit status */
	case 0x36:	/* low limit status */
	case 0x37:	/* therm limit status */
		return true;
	default:
		return false;
	}
}

static const struct regmap_config emc1403_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.cache_type = REGCACHE_RBTREE,
	.volatile_reg = emc1403_regmap_is_volatile,
};

static int emc1403_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct thermal_data *data;
	struct device *hwmon_dev;

	data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
			    GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
	if (IS_ERR(data->regmap))
		return PTR_ERR(data->regmap);

	mutex_init(&data->mutex);

	switch (id->driver_data) {
	case emc1404:
		data->groups[2] = &emc1404_group;
	case emc1403:
		data->groups[1] = &emc1403_group;
	case emc1402:
		data->groups[0] = &emc1402_group;
	}

	if (id->driver_data == emc1402)
		data->groups[1] = &emc1402_alarm_group;

	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
							   client->name, data,
							   data->groups);
	if (IS_ERR(hwmon_dev))
		return PTR_ERR(hwmon_dev);

	dev_info(&client->dev, "%s Thermal chip found\n", id->name);
	return 0;
}

static const unsigned short emc1403_address_list[] = {
	0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
};

/* Last digit of chip name indicates number of channels */
static const struct i2c_device_id emc1403_idtable[] = {
	{ "emc1402", emc1402 },
	{ "emc1403", emc1403 },
	{ "emc1404", emc1404 },
	{ "emc1412", emc1402 },
	{ "emc1413", emc1403 },
	{ "emc1414", emc1404 },
	{ "emc1422", emc1402 },
	{ "emc1423", emc1403 },
	{ "emc1424", emc1404 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, emc1403_idtable);

static struct i2c_driver sensor_emc1403 = {
	.class = I2C_CLASS_HWMON,
	.driver = {
		.name = "emc1403",
	},
	.detect = emc1403_detect,
	.probe = emc1403_probe,
	.id_table = emc1403_idtable,
	.address_list = emc1403_address_list,
};

module_i2c_driver(sensor_emc1403);

MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
MODULE_DESCRIPTION("emc1403 Thermal Driver");
MODULE_LICENSE("GPL v2");