Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*
 * Freescale Memory Controller kernel module
 *
 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
 * ARM-based Layerscape SoCs including LS2xxx. Originally split
 * out from mpc85xx_edac EDAC driver.
 *
 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
 *
 * Author: Dave Jiang <djiang@mvista.com>
 *
 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
 * the terms of the GNU General Public License version 2. This program
 * is licensed "as is" without any warranty of any kind, whether express
 * or implied.
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/edac.h>
#include <linux/smp.h>
#include <linux/gfp.h>

#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include "edac_module.h"
#include "fsl_ddr_edac.h"

#define EDAC_MOD_STR	"fsl_ddr_edac"

static int edac_mc_idx;

static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
static bool little_endian;

static inline u32 ddr_in32(void __iomem *addr)
{
	return little_endian ? ioread32(addr) : ioread32be(addr);
}

static inline void ddr_out32(void __iomem *addr, u32 value)
{
	if (little_endian)
		iowrite32(value, addr);
	else
		iowrite32be(value, addr);
}

/************************ MC SYSFS parts ***********************************/

#define to_mci(k) container_of(k, struct mem_ctl_info, dev)

static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	return sprintf(data, "0x%08x",
		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
}

static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
					  struct device_attribute *mattr,
					      char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	return sprintf(data, "0x%08x",
		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
}

static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
				       struct device_attribute *mattr,
					   char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	return sprintf(data, "0x%08x",
		       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
}

static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
					   struct device_attribute *mattr,
					       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	unsigned long val;
	int rc;

	if (isdigit(*data)) {
		rc = kstrtoul(data, 0, &val);
		if (rc)
			return rc;

		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
		return count;
	}
	return 0;
}

static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
					   struct device_attribute *mattr,
					       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	unsigned long val;
	int rc;

	if (isdigit(*data)) {
		rc = kstrtoul(data, 0, &val);
		if (rc)
			return rc;

		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
		return count;
	}
	return 0;
}

static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
					struct device_attribute *mattr,
					       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	unsigned long val;
	int rc;

	if (isdigit(*data)) {
		rc = kstrtoul(data, 0, &val);
		if (rc)
			return rc;

		ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
		return count;
	}
	return 0;
}

static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
		   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
		   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
		   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);

static struct attribute *fsl_ddr_dev_attrs[] = {
	&dev_attr_inject_data_hi.attr,
	&dev_attr_inject_data_lo.attr,
	&dev_attr_inject_ctrl.attr,
	NULL
};

ATTRIBUTE_GROUPS(fsl_ddr_dev);

/**************************** MC Err device ***************************/

/*
 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
 * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
 * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
 * below correspond to Freescale's manuals.
 */
static unsigned int ecc_table[16] = {
	/* MSB           LSB */
	/* [0:31]    [32:63] */
	0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */
	0x00ff00ff, 0x00fff0ff,
	0x0f0f0f0f, 0x0f0fff00,
	0x11113333, 0x7777000f,
	0x22224444, 0x8888222f,
	0x44448888, 0xffff4441,
	0x8888ffff, 0x11118882,
	0xffff1111, 0x22221114,	/* Syndrome bit 0 */
};

/*
 * Calculate the correct ECC value for a 64-bit value specified by high:low
 */
static u8 calculate_ecc(u32 high, u32 low)
{
	u32 mask_low;
	u32 mask_high;
	int bit_cnt;
	u8 ecc = 0;
	int i;
	int j;

	for (i = 0; i < 8; i++) {
		mask_high = ecc_table[i * 2];
		mask_low = ecc_table[i * 2 + 1];
		bit_cnt = 0;

		for (j = 0; j < 32; j++) {
			if ((mask_high >> j) & 1)
				bit_cnt ^= (high >> j) & 1;
			if ((mask_low >> j) & 1)
				bit_cnt ^= (low >> j) & 1;
		}

		ecc |= bit_cnt << i;
	}

	return ecc;
}

/*
 * Create the syndrome code which is generated if the data line specified by
 * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
 * User's Manual and 9-61 in the MPC8572 User's Manual.
 */
static u8 syndrome_from_bit(unsigned int bit) {
	int i;
	u8 syndrome = 0;

	/*
	 * Cycle through the upper or lower 32-bit portion of each value in
	 * ecc_table depending on if 'bit' is in the upper or lower half of
	 * 64-bit data.
	 */
	for (i = bit < 32; i < 16; i += 2)
		syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);

	return syndrome;
}

/*
 * Decode data and ecc syndrome to determine what went wrong
 * Note: This can only decode single-bit errors
 */
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
		       int *bad_data_bit, int *bad_ecc_bit)
{
	int i;
	u8 syndrome;

	*bad_data_bit = -1;
	*bad_ecc_bit = -1;

	/*
	 * Calculate the ECC of the captured data and XOR it with the captured
	 * ECC to find an ECC syndrome value we can search for
	 */
	syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;

	/* Check if a data line is stuck... */
	for (i = 0; i < 64; i++) {
		if (syndrome == syndrome_from_bit(i)) {
			*bad_data_bit = i;
			return;
		}
	}

	/* If data is correct, check ECC bits for errors... */
	for (i = 0; i < 8; i++) {
		if ((syndrome >> i) & 0x1) {
			*bad_ecc_bit = i;
			return;
		}
	}
}

#define make64(high, low) (((u64)(high) << 32) | (low))

static void fsl_mc_check(struct mem_ctl_info *mci)
{
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	struct csrow_info *csrow;
	u32 bus_width;
	u32 err_detect;
	u32 syndrome;
	u64 err_addr;
	u32 pfn;
	int row_index;
	u32 cap_high;
	u32 cap_low;
	int bad_data_bit;
	int bad_ecc_bit;

	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
	if (!err_detect)
		return;

	fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
		      err_detect);

	/* no more processing if not ECC bit errors */
	if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
		return;
	}

	syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);

	/* Mask off appropriate bits of syndrome based on bus width */
	bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
		     DSC_DBW_MASK) ? 32 : 64;
	if (bus_width == 64)
		syndrome &= 0xff;
	else
		syndrome &= 0xffff;

	err_addr = make64(
		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
	pfn = err_addr >> PAGE_SHIFT;

	for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
		csrow = mci->csrows[row_index];
		if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
			break;
	}

	cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
	cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);

	/*
	 * Analyze single-bit errors on 64-bit wide buses
	 * TODO: Add support for 32-bit wide buses
	 */
	if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
		sbe_ecc_decode(cap_high, cap_low, syndrome,
				&bad_data_bit, &bad_ecc_bit);

		if (bad_data_bit != -1)
			fsl_mc_printk(mci, KERN_ERR,
				"Faulty Data bit: %d\n", bad_data_bit);
		if (bad_ecc_bit != -1)
			fsl_mc_printk(mci, KERN_ERR,
				"Faulty ECC bit: %d\n", bad_ecc_bit);

		fsl_mc_printk(mci, KERN_ERR,
			"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
			cap_high ^ (1 << (bad_data_bit - 32)),
			cap_low ^ (1 << bad_data_bit),
			syndrome ^ (1 << bad_ecc_bit));
	}

	fsl_mc_printk(mci, KERN_ERR,
			"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
			cap_high, cap_low, syndrome);
	fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
	fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);

	/* we are out of range */
	if (row_index == mci->nr_csrows)
		fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");

	if (err_detect & DDR_EDE_SBE)
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
				     pfn, err_addr & ~PAGE_MASK, syndrome,
				     row_index, 0, -1,
				     mci->ctl_name, "");

	if (err_detect & DDR_EDE_MBE)
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
				     pfn, err_addr & ~PAGE_MASK, syndrome,
				     row_index, 0, -1,
				     mci->ctl_name, "");

	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
}

static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
{
	struct mem_ctl_info *mci = dev_id;
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	u32 err_detect;

	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
	if (!err_detect)
		return IRQ_NONE;

	fsl_mc_check(mci);

	return IRQ_HANDLED;
}

static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
{
	struct fsl_mc_pdata *pdata = mci->pvt_info;
	struct csrow_info *csrow;
	struct dimm_info *dimm;
	u32 sdram_ctl;
	u32 sdtype;
	enum mem_type mtype;
	u32 cs_bnds;
	int index;

	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);

	sdtype = sdram_ctl & DSC_SDTYPE_MASK;
	if (sdram_ctl & DSC_RD_EN) {
		switch (sdtype) {
		case 0x02000000:
			mtype = MEM_RDDR;
			break;
		case 0x03000000:
			mtype = MEM_RDDR2;
			break;
		case 0x07000000:
			mtype = MEM_RDDR3;
			break;
		case 0x05000000:
			mtype = MEM_RDDR4;
			break;
		default:
			mtype = MEM_UNKNOWN;
			break;
		}
	} else {
		switch (sdtype) {
		case 0x02000000:
			mtype = MEM_DDR;
			break;
		case 0x03000000:
			mtype = MEM_DDR2;
			break;
		case 0x07000000:
			mtype = MEM_DDR3;
			break;
		case 0x05000000:
			mtype = MEM_DDR4;
			break;
		default:
			mtype = MEM_UNKNOWN;
			break;
		}
	}

	for (index = 0; index < mci->nr_csrows; index++) {
		u32 start;
		u32 end;

		csrow = mci->csrows[index];
		dimm = csrow->channels[0]->dimm;

		cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
				   (index * FSL_MC_CS_BNDS_OFS));

		start = (cs_bnds & 0xffff0000) >> 16;
		end   = (cs_bnds & 0x0000ffff);

		if (start == end)
			continue;	/* not populated */

		start <<= (24 - PAGE_SHIFT);
		end   <<= (24 - PAGE_SHIFT);
		end    |= (1 << (24 - PAGE_SHIFT)) - 1;

		csrow->first_page = start;
		csrow->last_page = end;

		dimm->nr_pages = end + 1 - start;
		dimm->grain = 8;
		dimm->mtype = mtype;
		dimm->dtype = DEV_UNKNOWN;
		if (sdram_ctl & DSC_X32_EN)
			dimm->dtype = DEV_X32;
		dimm->edac_mode = EDAC_SECDED;
	}
}

int fsl_mc_err_probe(struct platform_device *op)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[2];
	struct fsl_mc_pdata *pdata;
	struct resource r;
	u32 sdram_ctl;
	int res;

	if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
		return -ENOMEM;

	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = 4;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = 1;
	layers[1].is_virt_csrow = false;
	mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
			    sizeof(*pdata));
	if (!mci) {
		devres_release_group(&op->dev, fsl_mc_err_probe);
		return -ENOMEM;
	}

	pdata = mci->pvt_info;
	pdata->name = "fsl_mc_err";
	mci->pdev = &op->dev;
	pdata->edac_idx = edac_mc_idx++;
	dev_set_drvdata(mci->pdev, mci);
	mci->ctl_name = pdata->name;
	mci->dev_name = pdata->name;

	/*
	 * Get the endianness of DDR controller registers.
	 * Default is big endian.
	 */
	little_endian = of_property_read_bool(op->dev.of_node, "little-endian");

	res = of_address_to_resource(op->dev.of_node, 0, &r);
	if (res) {
		pr_err("%s: Unable to get resource for MC err regs\n",
		       __func__);
		goto err;
	}

	if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
				     pdata->name)) {
		pr_err("%s: Error while requesting mem region\n",
		       __func__);
		res = -EBUSY;
		goto err;
	}

	pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
	if (!pdata->mc_vbase) {
		pr_err("%s: Unable to setup MC err regs\n", __func__);
		res = -ENOMEM;
		goto err;
	}

	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
	if (!(sdram_ctl & DSC_ECC_EN)) {
		/* no ECC */
		pr_warn("%s: No ECC DIMMs discovered\n", __func__);
		res = -ENODEV;
		goto err;
	}

	edac_dbg(3, "init mci\n");
	mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
			 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
			 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
			 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
	mci->edac_cap = EDAC_FLAG_SECDED;
	mci->mod_name = EDAC_MOD_STR;

	if (edac_op_state == EDAC_OPSTATE_POLL)
		mci->edac_check = fsl_mc_check;

	mci->ctl_page_to_phys = NULL;

	mci->scrub_mode = SCRUB_SW_SRC;

	fsl_ddr_init_csrows(mci);

	/* store the original error disable bits */
	orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);

	/* clear all error bits */
	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);

	res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
	if (res) {
		edac_dbg(3, "failed edac_mc_add_mc()\n");
		goto err;
	}

	if (edac_op_state == EDAC_OPSTATE_INT) {
		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
			  DDR_EIE_MBEE | DDR_EIE_SBEE);

		/* store the original error management threshold */
		orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
					    FSL_MC_ERR_SBE) & 0xff0000;

		/* set threshold to 1 error per interrupt */
		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);

		/* register interrupts */
		pdata->irq = platform_get_irq(op, 0);
		res = devm_request_irq(&op->dev, pdata->irq,
				       fsl_mc_isr,
				       IRQF_SHARED,
				       "[EDAC] MC err", mci);
		if (res < 0) {
			pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
			       __func__, pdata->irq);
			res = -ENODEV;
			goto err2;
		}

		pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
		       pdata->irq);
	}

	devres_remove_group(&op->dev, fsl_mc_err_probe);
	edac_dbg(3, "success\n");
	pr_info(EDAC_MOD_STR " MC err registered\n");

	return 0;

err2:
	edac_mc_del_mc(&op->dev);
err:
	devres_release_group(&op->dev, fsl_mc_err_probe);
	edac_mc_free(mci);
	return res;
}

int fsl_mc_err_remove(struct platform_device *op)
{
	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
	struct fsl_mc_pdata *pdata = mci->pvt_info;

	edac_dbg(0, "\n");

	if (edac_op_state == EDAC_OPSTATE_INT) {
		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
	}

	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
		  orig_ddr_err_disable);
	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);

	edac_mc_del_mc(&op->dev);
	edac_mc_free(mci);
	return 0;
}