Free Electrons

Embedded Linux Experts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
/*
 * ACPI support for Intel Lynxpoint LPSS.
 *
 * Copyright (C) 2013, Intel Corporation
 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/platform_data/clk-lpss.h>
#include <linux/platform_data/x86/pmc_atom.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/delay.h>

#include "internal.h"

ACPI_MODULE_NAME("acpi_lpss");

#ifdef CONFIG_X86_INTEL_LPSS

#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/iosf_mbi.h>

#define LPSS_ADDR(desc) ((unsigned long)&desc)

#define LPSS_CLK_SIZE	0x04
#define LPSS_LTR_SIZE	0x18

/* Offsets relative to LPSS_PRIVATE_OFFSET */
#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
#define LPSS_RESETS			0x04
#define LPSS_RESETS_RESET_FUNC		BIT(0)
#define LPSS_RESETS_RESET_APB		BIT(1)
#define LPSS_GENERAL			0x08
#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
#define LPSS_SW_LTR			0x10
#define LPSS_AUTO_LTR			0x14
#define LPSS_LTR_SNOOP_REQ		BIT(15)
#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
#define LPSS_LTR_SNOOP_LAT_1US		0x800
#define LPSS_LTR_SNOOP_LAT_32US		0xC00
#define LPSS_LTR_SNOOP_LAT_SHIFT	5
#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
#define LPSS_LTR_MAX_VAL		0x3FF
#define LPSS_TX_INT			0x20
#define LPSS_TX_INT_MASK		BIT(1)

#define LPSS_PRV_REG_COUNT		9

/* LPSS Flags */
#define LPSS_CLK			BIT(0)
#define LPSS_CLK_GATE			BIT(1)
#define LPSS_CLK_DIVIDER		BIT(2)
#define LPSS_LTR			BIT(3)
#define LPSS_SAVE_CTX			BIT(4)
#define LPSS_NO_D3_DELAY		BIT(5)

struct lpss_private_data;

struct lpss_device_desc {
	unsigned int flags;
	const char *clk_con_id;
	unsigned int prv_offset;
	size_t prv_size_override;
	struct property_entry *properties;
	void (*setup)(struct lpss_private_data *pdata);
};

static const struct lpss_device_desc lpss_dma_desc = {
	.flags = LPSS_CLK,
};

struct lpss_private_data {
	struct acpi_device *adev;
	void __iomem *mmio_base;
	resource_size_t mmio_size;
	unsigned int fixed_clk_rate;
	struct clk *clk;
	const struct lpss_device_desc *dev_desc;
	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
};

/* LPSS run time quirks */
static unsigned int lpss_quirks;

/*
 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
 *
 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
 * it can be powered off automatically whenever the last LPSS device goes down.
 * In case of no power any access to the DMA controller will hang the system.
 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
 * well as on ASuS T100TA transformer.
 *
 * This quirk overrides power state of entire LPSS island to keep DMA powered
 * on whenever we have at least one other device in use.
 */
#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)

/* UART Component Parameter Register */
#define LPSS_UART_CPR			0xF4
#define LPSS_UART_CPR_AFCE		BIT(4)

static void lpss_uart_setup(struct lpss_private_data *pdata)
{
	unsigned int offset;
	u32 val;

	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
	val = readl(pdata->mmio_base + offset);
	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);

	val = readl(pdata->mmio_base + LPSS_UART_CPR);
	if (!(val & LPSS_UART_CPR_AFCE)) {
		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
		val = readl(pdata->mmio_base + offset);
		val |= LPSS_GENERAL_UART_RTS_OVRD;
		writel(val, pdata->mmio_base + offset);
	}
}

static void lpss_deassert_reset(struct lpss_private_data *pdata)
{
	unsigned int offset;
	u32 val;

	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
	val = readl(pdata->mmio_base + offset);
	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
	writel(val, pdata->mmio_base + offset);
}

/*
 * BYT PWM used for backlight control by the i915 driver on systems without
 * the Crystal Cove PMIC.
 */
static struct pwm_lookup byt_pwm_lookup[] = {
	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
			       "pwm-lpss-platform"),
};

static void byt_pwm_setup(struct lpss_private_data *pdata)
{
	struct acpi_device *adev = pdata->adev;

	/* Only call pwm_add_table for the first PWM controller */
	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
		return;

	if (!acpi_dev_present("INT33FD", NULL, -1))
		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
}

#define LPSS_I2C_ENABLE			0x6c

static void byt_i2c_setup(struct lpss_private_data *pdata)
{
	lpss_deassert_reset(pdata);

	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
		pdata->fixed_clk_rate = 133000000;

	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
}

/* BSW PWM used for backlight control by the i915 driver */
static struct pwm_lookup bsw_pwm_lookup[] = {
	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
			       "pwm-lpss-platform"),
};

static void bsw_pwm_setup(struct lpss_private_data *pdata)
{
	struct acpi_device *adev = pdata->adev;

	/* Only call pwm_add_table for the first PWM controller */
	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
		return;

	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
}

static const struct lpss_device_desc lpt_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
	.prv_offset = 0x800,
};

static const struct lpss_device_desc lpt_i2c_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
	.prv_offset = 0x800,
};

static struct property_entry uart_properties[] = {
	PROPERTY_ENTRY_U32("reg-io-width", 4),
	PROPERTY_ENTRY_U32("reg-shift", 2),
	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
	{ },
};

static const struct lpss_device_desc lpt_uart_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
	.clk_con_id = "baudclk",
	.prv_offset = 0x800,
	.setup = lpss_uart_setup,
	.properties = uart_properties,
};

static const struct lpss_device_desc lpt_sdio_dev_desc = {
	.flags = LPSS_LTR,
	.prv_offset = 0x1000,
	.prv_size_override = 0x1018,
};

static const struct lpss_device_desc byt_pwm_dev_desc = {
	.flags = LPSS_SAVE_CTX,
	.setup = byt_pwm_setup,
};

static const struct lpss_device_desc bsw_pwm_dev_desc = {
	.flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
	.setup = bsw_pwm_setup,
};

static const struct lpss_device_desc byt_uart_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
	.clk_con_id = "baudclk",
	.prv_offset = 0x800,
	.setup = lpss_uart_setup,
	.properties = uart_properties,
};

static const struct lpss_device_desc bsw_uart_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
			| LPSS_NO_D3_DELAY,
	.clk_con_id = "baudclk",
	.prv_offset = 0x800,
	.setup = lpss_uart_setup,
	.properties = uart_properties,
};

static const struct lpss_device_desc byt_spi_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
	.prv_offset = 0x400,
};

static const struct lpss_device_desc byt_sdio_dev_desc = {
	.flags = LPSS_CLK,
};

static const struct lpss_device_desc byt_i2c_dev_desc = {
	.flags = LPSS_CLK | LPSS_SAVE_CTX,
	.prv_offset = 0x800,
	.setup = byt_i2c_setup,
};

static const struct lpss_device_desc bsw_i2c_dev_desc = {
	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
	.prv_offset = 0x800,
	.setup = byt_i2c_setup,
};

static const struct lpss_device_desc bsw_spi_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
			| LPSS_NO_D3_DELAY,
	.prv_offset = 0x400,
	.setup = lpss_deassert_reset,
};

#define ICPU(model)	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }

static const struct x86_cpu_id lpss_cpu_ids[] = {
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1),	/* Valleyview, Bay Trail */
	ICPU(INTEL_FAM6_ATOM_AIRMONT),	/* Braswell, Cherry Trail */
	{}
};

#else

#define LPSS_ADDR(desc) (0UL)

#endif /* CONFIG_X86_INTEL_LPSS */

static const struct acpi_device_id acpi_lpss_device_ids[] = {
	/* Generic LPSS devices */
	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },

	/* Lynxpoint LPSS devices */
	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
	{ "INT33C7", },

	/* BayTrail LPSS devices */
	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
	{ "INT33B2", },
	{ "INT33FC", },

	/* Braswell LPSS devices */
	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },

	/* Broadwell LPSS devices */
	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
	{ "INT3437", },

	/* Wildcat Point LPSS devices */
	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },

	{ }
};

#ifdef CONFIG_X86_INTEL_LPSS

static int is_memory(struct acpi_resource *res, void *not_used)
{
	struct resource r;
	return !acpi_dev_resource_memory(res, &r);
}

/* LPSS main clock device. */
static struct platform_device *lpss_clk_dev;

static inline void lpt_register_clock_device(void)
{
	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
}

static int register_device_clock(struct acpi_device *adev,
				 struct lpss_private_data *pdata)
{
	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
	const char *devname = dev_name(&adev->dev);
	struct clk *clk = ERR_PTR(-ENODEV);
	struct lpss_clk_data *clk_data;
	const char *parent, *clk_name;
	void __iomem *prv_base;

	if (!lpss_clk_dev)
		lpt_register_clock_device();

	clk_data = platform_get_drvdata(lpss_clk_dev);
	if (!clk_data)
		return -ENODEV;
	clk = clk_data->clk;

	if (!pdata->mmio_base
	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
		return -ENODATA;

	parent = clk_data->name;
	prv_base = pdata->mmio_base + dev_desc->prv_offset;

	if (pdata->fixed_clk_rate) {
		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
					      pdata->fixed_clk_rate);
		goto out;
	}

	if (dev_desc->flags & LPSS_CLK_GATE) {
		clk = clk_register_gate(NULL, devname, parent, 0,
					prv_base, 0, 0, NULL);
		parent = devname;
	}

	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
		/* Prevent division by zero */
		if (!readl(prv_base))
			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);

		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
		if (!clk_name)
			return -ENOMEM;
		clk = clk_register_fractional_divider(NULL, clk_name, parent,
						      0, prv_base,
						      1, 15, 16, 15, 0, NULL);
		parent = clk_name;

		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
		if (!clk_name) {
			kfree(parent);
			return -ENOMEM;
		}
		clk = clk_register_gate(NULL, clk_name, parent,
					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
					prv_base, 31, 0, NULL);
		kfree(parent);
		kfree(clk_name);
	}
out:
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	pdata->clk = clk;
	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
	return 0;
}

static int acpi_lpss_create_device(struct acpi_device *adev,
				   const struct acpi_device_id *id)
{
	const struct lpss_device_desc *dev_desc;
	struct lpss_private_data *pdata;
	struct resource_entry *rentry;
	struct list_head resource_list;
	struct platform_device *pdev;
	int ret;

	dev_desc = (const struct lpss_device_desc *)id->driver_data;
	if (!dev_desc) {
		pdev = acpi_create_platform_device(adev, NULL);
		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
	}
	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
	if (ret < 0)
		goto err_out;

	list_for_each_entry(rentry, &resource_list, node)
		if (resource_type(rentry->res) == IORESOURCE_MEM) {
			if (dev_desc->prv_size_override)
				pdata->mmio_size = dev_desc->prv_size_override;
			else
				pdata->mmio_size = resource_size(rentry->res);
			pdata->mmio_base = ioremap(rentry->res->start,
						   pdata->mmio_size);
			break;
		}

	acpi_dev_free_resource_list(&resource_list);

	if (!pdata->mmio_base) {
		ret = -ENOMEM;
		goto err_out;
	}

	pdata->adev = adev;
	pdata->dev_desc = dev_desc;

	if (dev_desc->setup)
		dev_desc->setup(pdata);

	if (dev_desc->flags & LPSS_CLK) {
		ret = register_device_clock(adev, pdata);
		if (ret) {
			/* Skip the device, but continue the namespace scan. */
			ret = 0;
			goto err_out;
		}
	}

	/*
	 * This works around a known issue in ACPI tables where LPSS devices
	 * have _PS0 and _PS3 without _PSC (and no power resources), so
	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
	 */
	ret = acpi_device_fix_up_power(adev);
	if (ret) {
		/* Skip the device, but continue the namespace scan. */
		ret = 0;
		goto err_out;
	}

	adev->driver_data = pdata;
	pdev = acpi_create_platform_device(adev, dev_desc->properties);
	if (!IS_ERR_OR_NULL(pdev)) {
		return 1;
	}

	ret = PTR_ERR(pdev);
	adev->driver_data = NULL;

 err_out:
	kfree(pdata);
	return ret;
}

static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
{
	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
}

static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
			     unsigned int reg)
{
	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
}

static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
{
	struct acpi_device *adev;
	struct lpss_private_data *pdata;
	unsigned long flags;
	int ret;

	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
	if (WARN_ON(ret))
		return ret;

	spin_lock_irqsave(&dev->power.lock, flags);
	if (pm_runtime_suspended(dev)) {
		ret = -EAGAIN;
		goto out;
	}
	pdata = acpi_driver_data(adev);
	if (WARN_ON(!pdata || !pdata->mmio_base)) {
		ret = -ENODEV;
		goto out;
	}
	*val = __lpss_reg_read(pdata, reg);

 out:
	spin_unlock_irqrestore(&dev->power.lock, flags);
	return ret;
}

static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	u32 ltr_value = 0;
	unsigned int reg;
	int ret;

	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
	ret = lpss_reg_read(dev, reg, &ltr_value);
	if (ret)
		return ret;

	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
}

static ssize_t lpss_ltr_mode_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	u32 ltr_mode = 0;
	char *outstr;
	int ret;

	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
	if (ret)
		return ret;

	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
	return sprintf(buf, "%s\n", outstr);
}

static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);

static struct attribute *lpss_attrs[] = {
	&dev_attr_auto_ltr.attr,
	&dev_attr_sw_ltr.attr,
	&dev_attr_ltr_mode.attr,
	NULL,
};

static const struct attribute_group lpss_attr_group = {
	.attrs = lpss_attrs,
	.name = "lpss_ltr",
};

static void acpi_lpss_set_ltr(struct device *dev, s32 val)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	u32 ltr_mode, ltr_val;

	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
	if (val < 0) {
		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
		}
		return;
	}
	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
		val = LPSS_LTR_MAX_VAL;
	} else if (val > LPSS_LTR_MAX_VAL) {
		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
	} else {
		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
	}
	ltr_val |= val;
	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
	}
}

#ifdef CONFIG_PM
/**
 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
 * @dev: LPSS device
 * @pdata: pointer to the private data of the LPSS device
 *
 * Most LPSS devices have private registers which may loose their context when
 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
 * prv_reg_ctx array.
 */
static void acpi_lpss_save_ctx(struct device *dev,
			       struct lpss_private_data *pdata)
{
	unsigned int i;

	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
		unsigned long offset = i * sizeof(u32);

		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
			pdata->prv_reg_ctx[i], offset);
	}
}

/**
 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
 * @dev: LPSS device
 * @pdata: pointer to the private data of the LPSS device
 *
 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
 */
static void acpi_lpss_restore_ctx(struct device *dev,
				  struct lpss_private_data *pdata)
{
	unsigned int i;

	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
		unsigned long offset = i * sizeof(u32);

		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
			pdata->prv_reg_ctx[i], offset);
	}
}

static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
{
	/*
	 * The following delay is needed or the subsequent write operations may
	 * fail. The LPSS devices are actually PCI devices and the PCI spec
	 * expects 10ms delay before the device can be accessed after D3 to D0
	 * transition. However some platforms like BSW does not need this delay.
	 */
	unsigned int delay = 10;	/* default 10ms delay */

	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
		delay = 0;

	msleep(delay);
}

static int acpi_lpss_activate(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

	ret = acpi_dev_runtime_resume(dev);
	if (ret)
		return ret;

	acpi_lpss_d3_to_d0_delay(pdata);

	/*
	 * This is called only on ->probe() stage where a device is either in
	 * known state defined by BIOS or most likely powered off. Due to this
	 * we have to deassert reset line to be sure that ->probe() will
	 * recognize the device.
	 */
	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		lpss_deassert_reset(pdata);

	return 0;
}

static void acpi_lpss_dismiss(struct device *dev)
{
	acpi_dev_runtime_suspend(dev);
}

#ifdef CONFIG_PM_SLEEP
static int acpi_lpss_suspend_late(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

	ret = pm_generic_suspend_late(dev);
	if (ret)
		return ret;

	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_save_ctx(dev, pdata);

	return acpi_dev_suspend_late(dev);
}

static int acpi_lpss_resume_early(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

	ret = acpi_dev_resume_early(dev);
	if (ret)
		return ret;

	acpi_lpss_d3_to_d0_delay(pdata);

	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_restore_ctx(dev, pdata);

	return pm_generic_resume_early(dev);
}
#endif /* CONFIG_PM_SLEEP */

/* IOSF SB for LPSS island */
#define LPSS_IOSF_UNIT_LPIOEP		0xA0
#define LPSS_IOSF_UNIT_LPIO1		0xAB
#define LPSS_IOSF_UNIT_LPIO2		0xAC

#define LPSS_IOSF_PMCSR			0x84
#define LPSS_PMCSR_D0			0
#define LPSS_PMCSR_D3hot		3
#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)

#define LPSS_IOSF_GPIODEF0		0x154
#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
#define LPSS_GPIODEF0_DMA_LLP		BIT(13)

static DEFINE_MUTEX(lpss_iosf_mutex);

static void lpss_iosf_enter_d3_state(void)
{
	u32 value1 = 0;
	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
	u32 value2 = LPSS_PMCSR_D3hot;
	u32 mask2 = LPSS_PMCSR_Dx_MASK;
	/*
	 * PMC provides an information about actual status of the LPSS devices.
	 * Here we read the values related to LPSS power island, i.e. LPSS
	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
	 */
	u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
	int ret;

	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
	if (ret)
		return;

	mutex_lock(&lpss_iosf_mutex);

	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
	if (ret)
		goto exit;

	/*
	 * Get the status of entire LPSS power island per device basis.
	 * Shutdown both LPSS DMA controllers if and only if all other devices
	 * are already in D3hot.
	 */
	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
	if (pmc_status)
		goto exit;

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
			LPSS_IOSF_GPIODEF0, value1, mask1);
exit:
	mutex_unlock(&lpss_iosf_mutex);
}

static void lpss_iosf_exit_d3_state(void)
{
	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
		     LPSS_GPIODEF0_DMA_LLP;
	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
	u32 value2 = LPSS_PMCSR_D0;
	u32 mask2 = LPSS_PMCSR_Dx_MASK;

	mutex_lock(&lpss_iosf_mutex);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
			LPSS_IOSF_GPIODEF0, value1, mask1);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	mutex_unlock(&lpss_iosf_mutex);
}

static int acpi_lpss_runtime_suspend(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

	ret = pm_generic_runtime_suspend(dev);
	if (ret)
		return ret;

	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_save_ctx(dev, pdata);

	ret = acpi_dev_runtime_suspend(dev);

	/*
	 * This call must be last in the sequence, otherwise PMC will return
	 * wrong status for devices being about to be powered off. See
	 * lpss_iosf_enter_d3_state() for further information.
	 */
	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
		lpss_iosf_enter_d3_state();

	return ret;
}

static int acpi_lpss_runtime_resume(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

	/*
	 * This call is kept first to be in symmetry with
	 * acpi_lpss_runtime_suspend() one.
	 */
	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
		lpss_iosf_exit_d3_state();

	ret = acpi_dev_runtime_resume(dev);
	if (ret)
		return ret;

	acpi_lpss_d3_to_d0_delay(pdata);

	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_restore_ctx(dev, pdata);

	return pm_generic_runtime_resume(dev);
}
#endif /* CONFIG_PM */

static struct dev_pm_domain acpi_lpss_pm_domain = {
#ifdef CONFIG_PM
	.activate = acpi_lpss_activate,
	.dismiss = acpi_lpss_dismiss,
#endif
	.ops = {
#ifdef CONFIG_PM
#ifdef CONFIG_PM_SLEEP
		.prepare = acpi_subsys_prepare,
		.complete = pm_complete_with_resume_check,
		.suspend = acpi_subsys_suspend,
		.suspend_late = acpi_lpss_suspend_late,
		.resume_early = acpi_lpss_resume_early,
		.freeze = acpi_subsys_freeze,
		.poweroff = acpi_subsys_suspend,
		.poweroff_late = acpi_lpss_suspend_late,
		.restore_early = acpi_lpss_resume_early,
#endif
		.runtime_suspend = acpi_lpss_runtime_suspend,
		.runtime_resume = acpi_lpss_runtime_resume,
#endif
	},
};

static int acpi_lpss_platform_notify(struct notifier_block *nb,
				     unsigned long action, void *data)
{
	struct platform_device *pdev = to_platform_device(data);
	struct lpss_private_data *pdata;
	struct acpi_device *adev;
	const struct acpi_device_id *id;

	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
	if (!id || !id->driver_data)
		return 0;

	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
		return 0;

	pdata = acpi_driver_data(adev);
	if (!pdata)
		return 0;

	if (pdata->mmio_base &&
	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
		return 0;
	}

	switch (action) {
	case BUS_NOTIFY_BIND_DRIVER:
		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
		break;
	case BUS_NOTIFY_DRIVER_NOT_BOUND:
	case BUS_NOTIFY_UNBOUND_DRIVER:
		dev_pm_domain_set(&pdev->dev, NULL);
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
		if (pdata->dev_desc->flags & LPSS_LTR)
			return sysfs_create_group(&pdev->dev.kobj,
						  &lpss_attr_group);
		break;
	case BUS_NOTIFY_DEL_DEVICE:
		if (pdata->dev_desc->flags & LPSS_LTR)
			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
		dev_pm_domain_set(&pdev->dev, NULL);
		break;
	default:
		break;
	}

	return 0;
}

static struct notifier_block acpi_lpss_nb = {
	.notifier_call = acpi_lpss_platform_notify,
};

static void acpi_lpss_bind(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));

	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
		return;

	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
	else
		dev_err(dev, "MMIO size insufficient to access LTR\n");
}

static void acpi_lpss_unbind(struct device *dev)
{
	dev->power.set_latency_tolerance = NULL;
}

static struct acpi_scan_handler lpss_handler = {
	.ids = acpi_lpss_device_ids,
	.attach = acpi_lpss_create_device,
	.bind = acpi_lpss_bind,
	.unbind = acpi_lpss_unbind,
};

void __init acpi_lpss_init(void)
{
	const struct x86_cpu_id *id;
	int ret;

	ret = lpt_clk_init();
	if (ret)
		return;

	id = x86_match_cpu(lpss_cpu_ids);
	if (id)
		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;

	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
	acpi_scan_add_handler(&lpss_handler);
}

#else

static struct acpi_scan_handler lpss_handler = {
	.ids = acpi_lpss_device_ids,
};

void __init acpi_lpss_init(void)
{
	acpi_scan_add_handler(&lpss_handler);
}

#endif /* CONFIG_X86_INTEL_LPSS */