Free Electrons

Embedded Linux Experts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * Copyright 2007, Michael Ellerman, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */


#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/export.h>
#include <linux/of_platform.h>
#include <linux/debugfs.h>
#include <linux/slab.h>

#include <asm/dcr.h>
#include <asm/machdep.h>
#include <asm/prom.h>

#include "cell.h"

/*
 * MSIC registers, specified as offsets from dcr_base
 */
#define MSIC_CTRL_REG	0x0

/* Base Address registers specify FIFO location in BE memory */
#define MSIC_BASE_ADDR_HI_REG	0x3
#define MSIC_BASE_ADDR_LO_REG	0x4

/* Hold the read/write offsets into the FIFO */
#define MSIC_READ_OFFSET_REG	0x5
#define MSIC_WRITE_OFFSET_REG	0x6


/* MSIC control register flags */
#define MSIC_CTRL_ENABLE		0x0001
#define MSIC_CTRL_FIFO_FULL_ENABLE	0x0002
#define MSIC_CTRL_IRQ_ENABLE		0x0008
#define MSIC_CTRL_FULL_STOP_ENABLE	0x0010

/*
 * The MSIC can be configured to use a FIFO of 32KB, 64KB, 128KB or 256KB.
 * Currently we're using a 64KB FIFO size.
 */
#define MSIC_FIFO_SIZE_SHIFT	16
#define MSIC_FIFO_SIZE_BYTES	(1 << MSIC_FIFO_SIZE_SHIFT)

/*
 * To configure the FIFO size as (1 << n) bytes, we write (n - 15) into bits
 * 8-9 of the MSIC control reg.
 */
#define MSIC_CTRL_FIFO_SIZE	(((MSIC_FIFO_SIZE_SHIFT - 15) << 8) & 0x300)

/*
 * We need to mask the read/write offsets to make sure they stay within
 * the bounds of the FIFO. Also they should always be 16-byte aligned.
 */
#define MSIC_FIFO_SIZE_MASK	((MSIC_FIFO_SIZE_BYTES - 1) & ~0xFu)

/* Each entry in the FIFO is 16 bytes, the first 4 bytes hold the irq # */
#define MSIC_FIFO_ENTRY_SIZE	0x10


struct axon_msic {
	struct irq_domain *irq_domain;
	__le32 *fifo_virt;
	dma_addr_t fifo_phys;
	dcr_host_t dcr_host;
	u32 read_offset;
#ifdef DEBUG
	u32 __iomem *trigger;
#endif
};

#ifdef DEBUG
void axon_msi_debug_setup(struct device_node *dn, struct axon_msic *msic);
#else
static inline void axon_msi_debug_setup(struct device_node *dn,
					struct axon_msic *msic) { }
#endif


static void msic_dcr_write(struct axon_msic *msic, unsigned int dcr_n, u32 val)
{
	pr_devel("axon_msi: dcr_write(0x%x, 0x%x)\n", val, dcr_n);

	dcr_write(msic->dcr_host, dcr_n, val);
}

static void axon_msi_cascade(struct irq_desc *desc)
{
	struct irq_chip *chip = irq_desc_get_chip(desc);
	struct axon_msic *msic = irq_desc_get_handler_data(desc);
	u32 write_offset, msi;
	int idx;
	int retry = 0;

	write_offset = dcr_read(msic->dcr_host, MSIC_WRITE_OFFSET_REG);
	pr_devel("axon_msi: original write_offset 0x%x\n", write_offset);

	/* write_offset doesn't wrap properly, so we have to mask it */
	write_offset &= MSIC_FIFO_SIZE_MASK;

	while (msic->read_offset != write_offset && retry < 100) {
		idx  = msic->read_offset / sizeof(__le32);
		msi  = le32_to_cpu(msic->fifo_virt[idx]);
		msi &= 0xFFFF;

		pr_devel("axon_msi: woff %x roff %x msi %x\n",
			  write_offset, msic->read_offset, msi);

		if (msi < nr_irqs && irq_get_chip_data(msi) == msic) {
			generic_handle_irq(msi);
			msic->fifo_virt[idx] = cpu_to_le32(0xffffffff);
		} else {
			/*
			 * Reading the MSIC_WRITE_OFFSET_REG does not
			 * reliably flush the outstanding DMA to the
			 * FIFO buffer. Here we were reading stale
			 * data, so we need to retry.
			 */
			udelay(1);
			retry++;
			pr_devel("axon_msi: invalid irq 0x%x!\n", msi);
			continue;
		}

		if (retry) {
			pr_devel("axon_msi: late irq 0x%x, retry %d\n",
				 msi, retry);
			retry = 0;
		}

		msic->read_offset += MSIC_FIFO_ENTRY_SIZE;
		msic->read_offset &= MSIC_FIFO_SIZE_MASK;
	}

	if (retry) {
		printk(KERN_WARNING "axon_msi: irq timed out\n");

		msic->read_offset += MSIC_FIFO_ENTRY_SIZE;
		msic->read_offset &= MSIC_FIFO_SIZE_MASK;
	}

	chip->irq_eoi(&desc->irq_data);
}

static struct axon_msic *find_msi_translator(struct pci_dev *dev)
{
	struct irq_domain *irq_domain;
	struct device_node *dn, *tmp;
	const phandle *ph;
	struct axon_msic *msic = NULL;

	dn = of_node_get(pci_device_to_OF_node(dev));
	if (!dn) {
		dev_dbg(&dev->dev, "axon_msi: no pci_dn found\n");
		return NULL;
	}

	for (; dn; dn = of_get_next_parent(dn)) {
		ph = of_get_property(dn, "msi-translator", NULL);
		if (ph)
			break;
	}

	if (!ph) {
		dev_dbg(&dev->dev,
			"axon_msi: no msi-translator property found\n");
		goto out_error;
	}

	tmp = dn;
	dn = of_find_node_by_phandle(*ph);
	of_node_put(tmp);
	if (!dn) {
		dev_dbg(&dev->dev,
			"axon_msi: msi-translator doesn't point to a node\n");
		goto out_error;
	}

	irq_domain = irq_find_host(dn);
	if (!irq_domain) {
		dev_dbg(&dev->dev, "axon_msi: no irq_domain found for node %s\n",
			dn->full_name);
		goto out_error;
	}

	msic = irq_domain->host_data;

out_error:
	of_node_put(dn);

	return msic;
}

static int setup_msi_msg_address(struct pci_dev *dev, struct msi_msg *msg)
{
	struct device_node *dn;
	struct msi_desc *entry;
	int len;
	const u32 *prop;

	dn = of_node_get(pci_device_to_OF_node(dev));
	if (!dn) {
		dev_dbg(&dev->dev, "axon_msi: no pci_dn found\n");
		return -ENODEV;
	}

	entry = first_pci_msi_entry(dev);

	for (; dn; dn = of_get_next_parent(dn)) {
		if (entry->msi_attrib.is_64) {
			prop = of_get_property(dn, "msi-address-64", &len);
			if (prop)
				break;
		}

		prop = of_get_property(dn, "msi-address-32", &len);
		if (prop)
			break;
	}

	if (!prop) {
		dev_dbg(&dev->dev,
			"axon_msi: no msi-address-(32|64) properties found\n");
		return -ENOENT;
	}

	switch (len) {
	case 8:
		msg->address_hi = prop[0];
		msg->address_lo = prop[1];
		break;
	case 4:
		msg->address_hi = 0;
		msg->address_lo = prop[0];
		break;
	default:
		dev_dbg(&dev->dev,
			"axon_msi: malformed msi-address-(32|64) property\n");
		of_node_put(dn);
		return -EINVAL;
	}

	of_node_put(dn);

	return 0;
}

static int axon_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
	unsigned int virq, rc;
	struct msi_desc *entry;
	struct msi_msg msg;
	struct axon_msic *msic;

	msic = find_msi_translator(dev);
	if (!msic)
		return -ENODEV;

	rc = setup_msi_msg_address(dev, &msg);
	if (rc)
		return rc;

	for_each_pci_msi_entry(entry, dev) {
		virq = irq_create_direct_mapping(msic->irq_domain);
		if (!virq) {
			dev_warn(&dev->dev,
				 "axon_msi: virq allocation failed!\n");
			return -1;
		}
		dev_dbg(&dev->dev, "axon_msi: allocated virq 0x%x\n", virq);

		irq_set_msi_desc(virq, entry);
		msg.data = virq;
		pci_write_msi_msg(virq, &msg);
	}

	return 0;
}

static void axon_msi_teardown_msi_irqs(struct pci_dev *dev)
{
	struct msi_desc *entry;

	dev_dbg(&dev->dev, "axon_msi: tearing down msi irqs\n");

	for_each_pci_msi_entry(entry, dev) {
		if (!entry->irq)
			continue;

		irq_set_msi_desc(entry->irq, NULL);
		irq_dispose_mapping(entry->irq);
	}
}

static struct irq_chip msic_irq_chip = {
	.irq_mask	= pci_msi_mask_irq,
	.irq_unmask	= pci_msi_unmask_irq,
	.irq_shutdown	= pci_msi_mask_irq,
	.name		= "AXON-MSI",
};

static int msic_host_map(struct irq_domain *h, unsigned int virq,
			 irq_hw_number_t hw)
{
	irq_set_chip_data(virq, h->host_data);
	irq_set_chip_and_handler(virq, &msic_irq_chip, handle_simple_irq);

	return 0;
}

static const struct irq_domain_ops msic_host_ops = {
	.map	= msic_host_map,
};

static void axon_msi_shutdown(struct platform_device *device)
{
	struct axon_msic *msic = dev_get_drvdata(&device->dev);
	u32 tmp;

	pr_devel("axon_msi: disabling %s\n",
		 irq_domain_get_of_node(msic->irq_domain)->full_name);
	tmp  = dcr_read(msic->dcr_host, MSIC_CTRL_REG);
	tmp &= ~MSIC_CTRL_ENABLE & ~MSIC_CTRL_IRQ_ENABLE;
	msic_dcr_write(msic, MSIC_CTRL_REG, tmp);
}

static int axon_msi_probe(struct platform_device *device)
{
	struct device_node *dn = device->dev.of_node;
	struct axon_msic *msic;
	unsigned int virq;
	int dcr_base, dcr_len;

	pr_devel("axon_msi: setting up dn %s\n", dn->full_name);

	msic = kzalloc(sizeof(struct axon_msic), GFP_KERNEL);
	if (!msic) {
		printk(KERN_ERR "axon_msi: couldn't allocate msic for %s\n",
		       dn->full_name);
		goto out;
	}

	dcr_base = dcr_resource_start(dn, 0);
	dcr_len = dcr_resource_len(dn, 0);

	if (dcr_base == 0 || dcr_len == 0) {
		printk(KERN_ERR
		       "axon_msi: couldn't parse dcr properties on %s\n",
			dn->full_name);
		goto out_free_msic;
	}

	msic->dcr_host = dcr_map(dn, dcr_base, dcr_len);
	if (!DCR_MAP_OK(msic->dcr_host)) {
		printk(KERN_ERR "axon_msi: dcr_map failed for %s\n",
		       dn->full_name);
		goto out_free_msic;
	}

	msic->fifo_virt = dma_alloc_coherent(&device->dev, MSIC_FIFO_SIZE_BYTES,
					     &msic->fifo_phys, GFP_KERNEL);
	if (!msic->fifo_virt) {
		printk(KERN_ERR "axon_msi: couldn't allocate fifo for %s\n",
		       dn->full_name);
		goto out_free_msic;
	}

	virq = irq_of_parse_and_map(dn, 0);
	if (!virq) {
		printk(KERN_ERR "axon_msi: irq parse and map failed for %s\n",
		       dn->full_name);
		goto out_free_fifo;
	}
	memset(msic->fifo_virt, 0xff, MSIC_FIFO_SIZE_BYTES);

	/* We rely on being able to stash a virq in a u16, so limit irqs to < 65536 */
	msic->irq_domain = irq_domain_add_nomap(dn, 65536, &msic_host_ops, msic);
	if (!msic->irq_domain) {
		printk(KERN_ERR "axon_msi: couldn't allocate irq_domain for %s\n",
		       dn->full_name);
		goto out_free_fifo;
	}

	irq_set_handler_data(virq, msic);
	irq_set_chained_handler(virq, axon_msi_cascade);
	pr_devel("axon_msi: irq 0x%x setup for axon_msi\n", virq);

	/* Enable the MSIC hardware */
	msic_dcr_write(msic, MSIC_BASE_ADDR_HI_REG, msic->fifo_phys >> 32);
	msic_dcr_write(msic, MSIC_BASE_ADDR_LO_REG,
				  msic->fifo_phys & 0xFFFFFFFF);
	msic_dcr_write(msic, MSIC_CTRL_REG,
			MSIC_CTRL_IRQ_ENABLE | MSIC_CTRL_ENABLE |
			MSIC_CTRL_FIFO_SIZE);

	msic->read_offset = dcr_read(msic->dcr_host, MSIC_WRITE_OFFSET_REG)
				& MSIC_FIFO_SIZE_MASK;

	dev_set_drvdata(&device->dev, msic);

	cell_pci_controller_ops.setup_msi_irqs = axon_msi_setup_msi_irqs;
	cell_pci_controller_ops.teardown_msi_irqs = axon_msi_teardown_msi_irqs;

	axon_msi_debug_setup(dn, msic);

	printk(KERN_DEBUG "axon_msi: setup MSIC on %s\n", dn->full_name);

	return 0;

out_free_fifo:
	dma_free_coherent(&device->dev, MSIC_FIFO_SIZE_BYTES, msic->fifo_virt,
			  msic->fifo_phys);
out_free_msic:
	kfree(msic);
out:

	return -1;
}

static const struct of_device_id axon_msi_device_id[] = {
	{
		.compatible	= "ibm,axon-msic"
	},
	{}
};

static struct platform_driver axon_msi_driver = {
	.probe		= axon_msi_probe,
	.shutdown	= axon_msi_shutdown,
	.driver = {
		.name = "axon-msi",
		.of_match_table = axon_msi_device_id,
	},
};

static int __init axon_msi_init(void)
{
	return platform_driver_register(&axon_msi_driver);
}
subsys_initcall(axon_msi_init);


#ifdef DEBUG
static int msic_set(void *data, u64 val)
{
	struct axon_msic *msic = data;
	out_le32(msic->trigger, val);
	return 0;
}

static int msic_get(void *data, u64 *val)
{
	*val = 0;
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_msic, msic_get, msic_set, "%llu\n");

void axon_msi_debug_setup(struct device_node *dn, struct axon_msic *msic)
{
	char name[8];
	u64 addr;

	addr = of_translate_address(dn, of_get_property(dn, "reg", NULL));
	if (addr == OF_BAD_ADDR) {
		pr_devel("axon_msi: couldn't translate reg property\n");
		return;
	}

	msic->trigger = ioremap(addr, 0x4);
	if (!msic->trigger) {
		pr_devel("axon_msi: ioremap failed\n");
		return;
	}

	snprintf(name, sizeof(name), "msic_%d", of_node_to_nid(dn));

	if (!debugfs_create_file(name, 0600, powerpc_debugfs_root,
				 msic, &fops_msic)) {
		pr_devel("axon_msi: debugfs_create_file failed!\n");
		return;
	}
}
#endif /* DEBUG */